Preparation and Characterization of Printed LTCC Substrates for Microwave Devices
A novel LTCC substrate manufacturing process based on 3D printing was investigated in this paper. Borosilicate glass-alumina substrates with controlled size and thickness were successfully manufactured using a self-developed dual-nozzle hybrid printing system. The printing parameters were carefully...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2019-01-01
|
Series: | Active and Passive Electronic Components |
Online Access: | http://dx.doi.org/10.1155/2019/6473587 |
Summary: | A novel LTCC substrate manufacturing process based on 3D printing was investigated in this paper. Borosilicate glass-alumina substrates with controlled size and thickness were successfully manufactured using a self-developed dual-nozzle hybrid printing system. The printing parameters were carefully analyzed. The mechanical and dielectric properties of the printed substrate were examined. The results show that the printed substrates obtain smooth surface (Ra=0.92 μm), compact microstructure (relative density 93.7%), proper bending strength (156 mPa), and low dielectric constant and loss (Ɛr=6.2, 1/tanδ=0.0055, at 3 GHz). All of those qualify the printed glass–ceramic substrates to be used as potential LTCC substrates in the microwave applications. The proposed method could simplify the traditional LTCC technology. |
---|---|
ISSN: | 0882-7516 1563-5031 |