Numerical study on the desorption processes of oil droplets inside oil-contaminated sand under cavitation micro-jets

The removal of the adsorbed oil droplet is critical to deoiling treatment of oil-bearing solid waste. Ultrasonic cavitation is regarded as an extremely useful method to assist the oil droplets desorption in the deoiling treatment. In this paper, the effects of cavitation micro-jets on the oil drople...

Full description

Bibliographic Details
Main Authors: Fang Zhao, Qianqian Yan, Daolai Cheng
Format: Article
Language:English
Published: Elsevier 2021-10-01
Series:Ultrasonics Sonochemistry
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S135041772100287X
Description
Summary:The removal of the adsorbed oil droplet is critical to deoiling treatment of oil-bearing solid waste. Ultrasonic cavitation is regarded as an extremely useful method to assist the oil droplets desorption in the deoiling treatment. In this paper, the effects of cavitation micro-jets on the oil droplets desorption were studied. The adsorbed states of oil droplets in the oil-contaminated sand were investigated using a microscope. Three representative absorbed states of the oil droplets can be summarized as: (1) the individual oil droplet adsorbed on the particle surface (2) the clustered oil droplets adsorbed on the particle surface; (3) the oil droplet adsorbed in a gap between particles. The micro-jet generation during the bubble collapse near a rigid wall under different acoustic pressure amplitudes at an ultrasonic frequency of 20 kHz was investigated numerically. The desorption processes of the oil droplets at the three representative absorbed states under micro-jets were also simulated subsequently. The results showed that the acoustic pressure has a great influence on the velocity of micro-jet, and the initial diameter of cavitation bubbles is significant for the cross-sectional area of micro-jets. The wall jet caused by a micro-jet impacting on the solid wall is the most important factor for the removal of the absorbed oil droplets. The oil droplet is broken by the jet impinging, and then it breaks away from the solid wall due to the shear force generated by the wall jet. In addition to a higher sound pressure, the cavitation bubble at a larger initial diameter is more important for the desorption of the clustered oil droplets. Conversely, the micro-jet generated by the cavitation bubble at a smaller initial diameter (0.1 mm) is more appropriate for the desorption of the oil droplet in a narrow or sharp-angled gap.
ISSN:1350-4177