Where to find 1.5 million yr old ice for the IPICS "Oldest-Ice" ice core

The recovery of a 1.5 million yr long ice core from Antarctica represents a keystone of our understanding of Quaternary climate, the progression of glaciation over this time period and the role of greenhouse gas cycles in this progression. Here we tackle the question of where such ice may still be f...

Full description

Bibliographic Details
Main Authors: H. Fischer, J. Severinghaus, E. Brook, E. Wolff, M. Albert, O. Alemany, R. Arthern, C. Bentley, D. Blankenship, J. Chappellaz, T. Creyts, D. Dahl-Jensen, M. Dinn, M. Frezzotti, S. Fujita, H. Gallee, R. Hindmarsh, D. Hudspeth, G. Jugie, K. Kawamura, V. Lipenkov, H. Miller, R. Mulvaney, F. Parrenin, F. Pattyn, C. Ritz, J. Schwander, D. Steinhage, T. van Ommen, F. Wilhelms
Format: Article
Language:English
Published: Copernicus Publications 2013-11-01
Series:Climate of the Past
Online Access:http://www.clim-past.net/9/2489/2013/cp-9-2489-2013.pdf
id doaj-486fa79a8a0f4a1d893bd73c0afb0214
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author H. Fischer
J. Severinghaus
E. Brook
E. Wolff
M. Albert
O. Alemany
R. Arthern
C. Bentley
D. Blankenship
J. Chappellaz
T. Creyts
D. Dahl-Jensen
M. Dinn
M. Frezzotti
S. Fujita
H. Gallee
R. Hindmarsh
D. Hudspeth
G. Jugie
K. Kawamura
V. Lipenkov
H. Miller
R. Mulvaney
F. Parrenin
F. Pattyn
C. Ritz
J. Schwander
D. Steinhage
T. van Ommen
F. Wilhelms
spellingShingle H. Fischer
J. Severinghaus
E. Brook
E. Wolff
M. Albert
O. Alemany
R. Arthern
C. Bentley
D. Blankenship
J. Chappellaz
T. Creyts
D. Dahl-Jensen
M. Dinn
M. Frezzotti
S. Fujita
H. Gallee
R. Hindmarsh
D. Hudspeth
G. Jugie
K. Kawamura
V. Lipenkov
H. Miller
R. Mulvaney
F. Parrenin
F. Pattyn
C. Ritz
J. Schwander
D. Steinhage
T. van Ommen
F. Wilhelms
Where to find 1.5 million yr old ice for the IPICS "Oldest-Ice" ice core
Climate of the Past
author_facet H. Fischer
J. Severinghaus
E. Brook
E. Wolff
M. Albert
O. Alemany
R. Arthern
C. Bentley
D. Blankenship
J. Chappellaz
T. Creyts
D. Dahl-Jensen
M. Dinn
M. Frezzotti
S. Fujita
H. Gallee
R. Hindmarsh
D. Hudspeth
G. Jugie
K. Kawamura
V. Lipenkov
H. Miller
R. Mulvaney
F. Parrenin
F. Pattyn
C. Ritz
J. Schwander
D. Steinhage
T. van Ommen
F. Wilhelms
author_sort H. Fischer
title Where to find 1.5 million yr old ice for the IPICS "Oldest-Ice" ice core
title_short Where to find 1.5 million yr old ice for the IPICS "Oldest-Ice" ice core
title_full Where to find 1.5 million yr old ice for the IPICS "Oldest-Ice" ice core
title_fullStr Where to find 1.5 million yr old ice for the IPICS "Oldest-Ice" ice core
title_full_unstemmed Where to find 1.5 million yr old ice for the IPICS "Oldest-Ice" ice core
title_sort where to find 1.5 million yr old ice for the ipics "oldest-ice" ice core
publisher Copernicus Publications
series Climate of the Past
issn 1814-9324
1814-9332
publishDate 2013-11-01
description The recovery of a 1.5 million yr long ice core from Antarctica represents a keystone of our understanding of Quaternary climate, the progression of glaciation over this time period and the role of greenhouse gas cycles in this progression. Here we tackle the question of where such ice may still be found in the Antarctic ice sheet. We can show that such old ice is most likely to exist in the plateau area of the East Antarctic ice sheet (EAIS) without stratigraphic disturbance and should be able to be recovered after careful pre-site selection studies. Based on a simple ice and heat flow model and glaciological observations, we conclude that positions in the vicinity of major domes and saddle position on the East Antarctic Plateau will most likely have such old ice in store and represent the best study areas for dedicated reconnaissance studies in the near future. In contrast to previous ice core drill site selections, however, we strongly suggest significantly reduced ice thickness to avoid bottom melting. For example for the geothermal heat flux and accumulation conditions at Dome C, an ice thickness lower than but close to about 2500 m would be required to find 1.5 Myr old ice (i.e., more than 700 m less than at the current EPICA Dome C drill site). Within this constraint, the resolution of an Oldest-Ice record and the distance of such old ice to the bedrock should be maximized to avoid ice flow disturbances, for example, by finding locations with minimum geothermal heat flux. As the geothermal heat flux is largely unknown for the EAIS, this parameter has to be carefully determined beforehand. In addition, detailed bedrock topography and ice flow history has to be reconstructed for candidates of an Oldest-Ice ice coring site. Finally, we argue strongly for rapid access drilling before any full, deep ice coring activity commences to bring datable samples to the surface and to allow an age check of the oldest ice.
url http://www.clim-past.net/9/2489/2013/cp-9-2489-2013.pdf
work_keys_str_mv AT hfischer wheretofind15millionyroldicefortheipicsoldesticeicecore
AT jseveringhaus wheretofind15millionyroldicefortheipicsoldesticeicecore
AT ebrook wheretofind15millionyroldicefortheipicsoldesticeicecore
AT ewolff wheretofind15millionyroldicefortheipicsoldesticeicecore
AT malbert wheretofind15millionyroldicefortheipicsoldesticeicecore
AT oalemany wheretofind15millionyroldicefortheipicsoldesticeicecore
AT rarthern wheretofind15millionyroldicefortheipicsoldesticeicecore
AT cbentley wheretofind15millionyroldicefortheipicsoldesticeicecore
AT dblankenship wheretofind15millionyroldicefortheipicsoldesticeicecore
AT jchappellaz wheretofind15millionyroldicefortheipicsoldesticeicecore
AT tcreyts wheretofind15millionyroldicefortheipicsoldesticeicecore
AT ddahljensen wheretofind15millionyroldicefortheipicsoldesticeicecore
AT mdinn wheretofind15millionyroldicefortheipicsoldesticeicecore
AT mfrezzotti wheretofind15millionyroldicefortheipicsoldesticeicecore
AT sfujita wheretofind15millionyroldicefortheipicsoldesticeicecore
AT hgallee wheretofind15millionyroldicefortheipicsoldesticeicecore
AT rhindmarsh wheretofind15millionyroldicefortheipicsoldesticeicecore
AT dhudspeth wheretofind15millionyroldicefortheipicsoldesticeicecore
AT gjugie wheretofind15millionyroldicefortheipicsoldesticeicecore
AT kkawamura wheretofind15millionyroldicefortheipicsoldesticeicecore
AT vlipenkov wheretofind15millionyroldicefortheipicsoldesticeicecore
AT hmiller wheretofind15millionyroldicefortheipicsoldesticeicecore
AT rmulvaney wheretofind15millionyroldicefortheipicsoldesticeicecore
AT fparrenin wheretofind15millionyroldicefortheipicsoldesticeicecore
AT fpattyn wheretofind15millionyroldicefortheipicsoldesticeicecore
AT critz wheretofind15millionyroldicefortheipicsoldesticeicecore
AT jschwander wheretofind15millionyroldicefortheipicsoldesticeicecore
AT dsteinhage wheretofind15millionyroldicefortheipicsoldesticeicecore
AT tvanommen wheretofind15millionyroldicefortheipicsoldesticeicecore
AT fwilhelms wheretofind15millionyroldicefortheipicsoldesticeicecore
_version_ 1725015049747038208
spelling doaj-486fa79a8a0f4a1d893bd73c0afb02142020-11-25T01:47:19ZengCopernicus PublicationsClimate of the Past1814-93241814-93322013-11-01962489250510.5194/cp-9-2489-2013Where to find 1.5 million yr old ice for the IPICS "Oldest-Ice" ice coreH. Fischer0J. Severinghaus1E. Brook2E. Wolff3M. Albert4O. Alemany5R. Arthern6C. Bentley7D. Blankenship8J. Chappellaz9T. Creyts10D. Dahl-Jensen11M. Dinn12M. Frezzotti13S. Fujita14H. Gallee15R. Hindmarsh16D. Hudspeth17G. Jugie18K. Kawamura19V. Lipenkov20H. Miller21R. Mulvaney22F. Parrenin23F. Pattyn24C. Ritz25J. Schwander26D. Steinhage27T. van Ommen28F. Wilhelms29Climate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, 3012 Bern & Oeschger Centre for Climate Change Research, University of Bern, SwitzerlandScripps Institution of Oceanography, University of California, San Diego, California, USADepartment of Geosciences, Oregon State University, Corvallis, Oregon, USABritish Antarctic Survey, High Cross, Cambridge, UKThayer School of Engineering, Dartmouth University, Hanover, New Hampshire, USALaboratoire de Glaciologie et Géophysique de l'Environnement, UJF-Grenoble, CNRS, St Martin d'Hères, FranceBritish Antarctic Survey, High Cross, Cambridge, UKUniversity of Wisconsin Madison, Madison, Wisconsin, USAInstitute for Geophysics, University of Texas at Austin, Austin, Texas, USALaboratoire de Glaciologie et Géophysique de l'Environnement, UJF-Grenoble, CNRS, St Martin d'Hères, FranceLamont Doherty Earth Observatory, Columbia University, Palisades, New York, USACentre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Copenhagen, DenmarkBritish Antarctic Survey, High Cross, Cambridge, UKENEA-CRE, Casaccia, Rome, ItalyNational Institute of Polar Research, Tokyo, JapanLaboratoire de Glaciologie et Géophysique de l'Environnement, UJF-Grenoble, CNRS, St Martin d'Hères, FranceBritish Antarctic Survey, High Cross, Cambridge, UKAustralian Antarctic Division, Hobart, Tasmania, AustraliaInstitut Polaire Français Paul-Emile Victor, Plouzané, FranceNational Institute of Polar Research, Tokyo, JapanArctic and Antarctic Research Institute, St. Petersburg, RussiaAlfred Wegener Institute for Polar and Marine Research, Bremerhaven, GermanyBritish Antarctic Survey, High Cross, Cambridge, UKLaboratoire de Glaciologie et Géophysique de l'Environnement, UJF-Grenoble, CNRS, St Martin d'Hères, FranceLaboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, BelgiumLaboratoire de Glaciologie et Géophysique de l'Environnement, UJF-Grenoble, CNRS, St Martin d'Hères, FranceClimate and Environmental Physics, Physics Institute, University of Bern, Sidlerstrasse 5, 3012 Bern & Oeschger Centre for Climate Change Research, University of Bern, SwitzerlandAlfred Wegener Institute for Polar and Marine Research, Bremerhaven, GermanyAustralian Antarctic Division, Hobart, Tasmania, AustraliaAlfred Wegener Institute for Polar and Marine Research, Bremerhaven, GermanyThe recovery of a 1.5 million yr long ice core from Antarctica represents a keystone of our understanding of Quaternary climate, the progression of glaciation over this time period and the role of greenhouse gas cycles in this progression. Here we tackle the question of where such ice may still be found in the Antarctic ice sheet. We can show that such old ice is most likely to exist in the plateau area of the East Antarctic ice sheet (EAIS) without stratigraphic disturbance and should be able to be recovered after careful pre-site selection studies. Based on a simple ice and heat flow model and glaciological observations, we conclude that positions in the vicinity of major domes and saddle position on the East Antarctic Plateau will most likely have such old ice in store and represent the best study areas for dedicated reconnaissance studies in the near future. In contrast to previous ice core drill site selections, however, we strongly suggest significantly reduced ice thickness to avoid bottom melting. For example for the geothermal heat flux and accumulation conditions at Dome C, an ice thickness lower than but close to about 2500 m would be required to find 1.5 Myr old ice (i.e., more than 700 m less than at the current EPICA Dome C drill site). Within this constraint, the resolution of an Oldest-Ice record and the distance of such old ice to the bedrock should be maximized to avoid ice flow disturbances, for example, by finding locations with minimum geothermal heat flux. As the geothermal heat flux is largely unknown for the EAIS, this parameter has to be carefully determined beforehand. In addition, detailed bedrock topography and ice flow history has to be reconstructed for candidates of an Oldest-Ice ice coring site. Finally, we argue strongly for rapid access drilling before any full, deep ice coring activity commences to bring datable samples to the surface and to allow an age check of the oldest ice.http://www.clim-past.net/9/2489/2013/cp-9-2489-2013.pdf