A Wireless Angle and Position Tracking Concept for Live Data Control of Advanced, Semi-Automated Manufacturing Processes

Despite recent industrial automation advances, small series production still requires a considerable amount of manual work, and training,and monitoring of workers is consuming a significant amount of time and manpower. Adopting live monitoring of the stages in manual production, along with the compr...

Full description

Bibliographic Details
Main Authors: Melanie Lipka, David Meinel, Stefan Müller, Erik Sippel, Jörg Franke, Martin Vossiek
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/9/2589
Description
Summary:Despite recent industrial automation advances, small series production still requires a considerable amount of manual work, and training,and monitoring of workers is consuming a significant amount of time and manpower. Adopting live monitoring of the stages in manual production, along with the comprehensive representation of production steps, may help resolve this problem. For ergonomic live support, the overall system presented in this paper combines localization, torque control, and a rotation counter in a novel approach to monitor of semi-automated manufacturing processes. A major challenge in this context is tracking, especially hand-guided tools, without the disruptions and restrictions necessary with rigid position encoders. In this paper, a promising measurement concept involving wireless wave-based sensors for close-range position tracking in industrial surroundings is proposed. By using simple beacons, the major share of processing is transferred to fixed nodes, allowing for reduced hardware size and power consumption for the wireless mobile units. This requires designated localization approaches relying on only relative phase information, similar to the proposed Kalman-filter-based-beam-tracking approach. Measurement results show a beam-tracking accuracy of about 0.58<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula> in azimuth and 0.89<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula> in elevation, resulting in an overall tracking accuracy of about 3.18 cm.
ISSN:1424-8220