APLIKASI GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) PADA PEMODELAN VOLUME KENDARAAN MASUK TOL SEMARANG
Time series data from neighboring separated location often associated both spatially and through time. Generalized space time autoregrresive (GSTAR) model is one of the most common used space-time model to modeling and predicting spatial and time series data. This study applied GSTAR to modeling veh...
Main Authors: | Dian Anggraeni, Alan Prahutama, Shofi Andari |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitas Diponegoro
2013-12-01
|
Series: | Media Statistika |
Online Access: | https://ejournal.undip.ac.id/index.php/media_statistika/article/view/7639 |
Similar Items
-
PEMODELAN REGRESI NONPARAMETRIK MENGGUNAKAN PENDEKATAN POLINOMIAL LOKAL PADA BEBAN LISTRIK DI KOTA SEMARANG
by: Suparti Suparti, et al.
Published: (2016-12-01) -
Perancangan Aplikasi Surat Masuk dan Keluar pada PT. Angkasa Pura 1 Semarang
by: Endang Sugiharti, et al.
Published: (2014-05-01) -
Aplikasi Model Generalized Space Time Autoregressive (GSTAR) pada Data Jumlah TKI Jawa Barat dengan Pemilihan Lokasi Berdasarkan Klaster DBSCAN
by: Herlin Dewi Karlina, et al.
Published: (2014-04-01) -
INTERPOLASI KRIGING DALAM PEMODELAN GSTAR-SUR DAN GSTARX-SUR PADA SERANGAN HAMA PENGGEREK BUAH KOPI
by: Henny Pramoedyo, et al.
Published: (2020-06-01) -
Comparison between VAR, GSTAR, FFNN-VAR and FFNN-GSTAR Models for Forecasting Oil Production
by: Suhartono, Suhartono, et al.
Published: (2018)