Pigments, elemental composition (C, N, P, and Si), and stoichiometry of particulate matter in the naturally iron fertilized region of Kerguelen in the Southern Ocean

The particulate matter distribution and phytoplankton community structure of the iron-fertilized Kerguelen region were investigated in early austral spring (October–November 2011) during the KEOPS2 cruise. The iron-fertilized region was characterized by a complex mesoscale circulation resulting in a...

Full description

Bibliographic Details
Main Authors: M. Lasbleiz, K. Leblanc, S. Blain, J. Ras, V. Cornet-Barthaux, S. Hélias Nunige, B. Quéguiner
Format: Article
Language:English
Published: Copernicus Publications 2014-10-01
Series:Biogeosciences
Online Access:http://www.biogeosciences.net/11/5931/2014/bg-11-5931-2014.pdf
id doaj-484420d656c04873b62ccce62104fb70
record_format Article
spelling doaj-484420d656c04873b62ccce62104fb702020-11-24T23:39:41ZengCopernicus PublicationsBiogeosciences1726-41701726-41892014-10-0111205931595510.5194/bg-11-5931-2014Pigments, elemental composition (C, N, P, and Si), and stoichiometry of particulate matter in the naturally iron fertilized region of Kerguelen in the Southern OceanM. Lasbleiz0K. Leblanc1S. Blain2J. Ras3V. Cornet-Barthaux4S. Hélias Nunige5B. Quéguiner6Aix-Marseille Université, Université de Toulon, CNRS/INSU, IRD, MIO, UM 110, 13288, Marseille, CEDEX 09, FranceAix-Marseille Université, Université de Toulon, CNRS/INSU, IRD, MIO, UM 110, 13288, Marseille, CEDEX 09, FranceSorbonne Universités, UPMC Univ Paris 06, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, 66650 Banyuls-sur-mer, FranceLaboratoire d'Océanographie de Villefranche, UMR7093, CNRS, 06230 Villefranche-sur-Mer, FranceAix-Marseille Université, Université de Toulon, CNRS/INSU, IRD, MIO, UM 110, 13288, Marseille, CEDEX 09, FranceAix-Marseille Université, Université de Toulon, CNRS/INSU, IRD, MIO, UM 110, 13288, Marseille, CEDEX 09, FranceAix-Marseille Université, Université de Toulon, CNRS/INSU, IRD, MIO, UM 110, 13288, Marseille, CEDEX 09, FranceThe particulate matter distribution and phytoplankton community structure of the iron-fertilized Kerguelen region were investigated in early austral spring (October–November 2011) during the KEOPS2 cruise. The iron-fertilized region was characterized by a complex mesoscale circulation resulting in a patchy distribution of particulate matter. Integrated concentrations over 200 m ranged from 72.2 to 317.7 mg m<sup>−2</sup> for chlorophyll <i>a</i> 314 to 744 mmol m<sup>−2</sup> for biogenic silica (BSi), 1106 to 2268 mmol m<sup>−2</sup> for particulate organic carbon, 215 to 436 mmol m<sup>−2</sup> for particulate organic nitrogen, and 29.3 to 39.0 mmol m<sup>−2</sup> for particulate organic phosphorus. Three distinct high biomass areas were identified: the coastal waters of Kerguelen Islands, the easternmost part of the study area in the polar front zone, and the southeastern Kerguelen Plateau. As expected from previous artificial and natural iron-fertilization experiments, the iron-fertilized areas were characterized by the development of large diatoms revealed by BSi size–fractionation and high performance liquid chromatography (HPLC) pigment signatures, whereas the iron-limited reference area was associated with a low biomass dominated by a mixed (nanoflagellates and diatoms) phytoplankton assemblage. A major difference from most previous artificial iron fertilization studies was the observation of much higher Si : C, Si : N, and Si : P ratios (0.31 ± 0.16, 1.6 ± 0.7 and 20.5 ± 7.9, respectively) in the iron-fertilized areas compared to the iron-limited reference station (0.13, 1.1, and 5.8, respectively). A second difference is the patchy response of the elemental composition of phytoplankton communities to large scale natural iron fertilization. Comparison to the previous KEOPS1 cruise also allowed to address the seasonal dynamics of phytoplankton bloom over the southeastern plateau. From particulate organic carbon (POC), particulate organic nitrogen (PON), and BSi evolutions, we showed that the elemental composition of the particulate matter also varies at the seasonal scale. This temporal evolution followed changes of the phytoplankton community structure as well as major changes in the nutrient stocks progressively leading to silicic acid exhaustion at the end of the productive season. <br><br> Our observations suggest that the specific response of phytoplankton communities under natural iron fertilization is much more diverse than what has been regularly observed in artificial iron fertilization experiments and that the elemental composition of the bulk particulate matter reflects phytoplankton taxonomic structure rather than being a direct consequence of iron availability.http://www.biogeosciences.net/11/5931/2014/bg-11-5931-2014.pdf
collection DOAJ
language English
format Article
sources DOAJ
author M. Lasbleiz
K. Leblanc
S. Blain
J. Ras
V. Cornet-Barthaux
S. Hélias Nunige
B. Quéguiner
spellingShingle M. Lasbleiz
K. Leblanc
S. Blain
J. Ras
V. Cornet-Barthaux
S. Hélias Nunige
B. Quéguiner
Pigments, elemental composition (C, N, P, and Si), and stoichiometry of particulate matter in the naturally iron fertilized region of Kerguelen in the Southern Ocean
Biogeosciences
author_facet M. Lasbleiz
K. Leblanc
S. Blain
J. Ras
V. Cornet-Barthaux
S. Hélias Nunige
B. Quéguiner
author_sort M. Lasbleiz
title Pigments, elemental composition (C, N, P, and Si), and stoichiometry of particulate matter in the naturally iron fertilized region of Kerguelen in the Southern Ocean
title_short Pigments, elemental composition (C, N, P, and Si), and stoichiometry of particulate matter in the naturally iron fertilized region of Kerguelen in the Southern Ocean
title_full Pigments, elemental composition (C, N, P, and Si), and stoichiometry of particulate matter in the naturally iron fertilized region of Kerguelen in the Southern Ocean
title_fullStr Pigments, elemental composition (C, N, P, and Si), and stoichiometry of particulate matter in the naturally iron fertilized region of Kerguelen in the Southern Ocean
title_full_unstemmed Pigments, elemental composition (C, N, P, and Si), and stoichiometry of particulate matter in the naturally iron fertilized region of Kerguelen in the Southern Ocean
title_sort pigments, elemental composition (c, n, p, and si), and stoichiometry of particulate matter in the naturally iron fertilized region of kerguelen in the southern ocean
publisher Copernicus Publications
series Biogeosciences
issn 1726-4170
1726-4189
publishDate 2014-10-01
description The particulate matter distribution and phytoplankton community structure of the iron-fertilized Kerguelen region were investigated in early austral spring (October–November 2011) during the KEOPS2 cruise. The iron-fertilized region was characterized by a complex mesoscale circulation resulting in a patchy distribution of particulate matter. Integrated concentrations over 200 m ranged from 72.2 to 317.7 mg m<sup>−2</sup> for chlorophyll <i>a</i> 314 to 744 mmol m<sup>−2</sup> for biogenic silica (BSi), 1106 to 2268 mmol m<sup>−2</sup> for particulate organic carbon, 215 to 436 mmol m<sup>−2</sup> for particulate organic nitrogen, and 29.3 to 39.0 mmol m<sup>−2</sup> for particulate organic phosphorus. Three distinct high biomass areas were identified: the coastal waters of Kerguelen Islands, the easternmost part of the study area in the polar front zone, and the southeastern Kerguelen Plateau. As expected from previous artificial and natural iron-fertilization experiments, the iron-fertilized areas were characterized by the development of large diatoms revealed by BSi size–fractionation and high performance liquid chromatography (HPLC) pigment signatures, whereas the iron-limited reference area was associated with a low biomass dominated by a mixed (nanoflagellates and diatoms) phytoplankton assemblage. A major difference from most previous artificial iron fertilization studies was the observation of much higher Si : C, Si : N, and Si : P ratios (0.31 ± 0.16, 1.6 ± 0.7 and 20.5 ± 7.9, respectively) in the iron-fertilized areas compared to the iron-limited reference station (0.13, 1.1, and 5.8, respectively). A second difference is the patchy response of the elemental composition of phytoplankton communities to large scale natural iron fertilization. Comparison to the previous KEOPS1 cruise also allowed to address the seasonal dynamics of phytoplankton bloom over the southeastern plateau. From particulate organic carbon (POC), particulate organic nitrogen (PON), and BSi evolutions, we showed that the elemental composition of the particulate matter also varies at the seasonal scale. This temporal evolution followed changes of the phytoplankton community structure as well as major changes in the nutrient stocks progressively leading to silicic acid exhaustion at the end of the productive season. <br><br> Our observations suggest that the specific response of phytoplankton communities under natural iron fertilization is much more diverse than what has been regularly observed in artificial iron fertilization experiments and that the elemental composition of the bulk particulate matter reflects phytoplankton taxonomic structure rather than being a direct consequence of iron availability.
url http://www.biogeosciences.net/11/5931/2014/bg-11-5931-2014.pdf
work_keys_str_mv AT mlasbleiz pigmentselementalcompositioncnpandsiandstoichiometryofparticulatematterinthenaturallyironfertilizedregionofkergueleninthesouthernocean
AT kleblanc pigmentselementalcompositioncnpandsiandstoichiometryofparticulatematterinthenaturallyironfertilizedregionofkergueleninthesouthernocean
AT sblain pigmentselementalcompositioncnpandsiandstoichiometryofparticulatematterinthenaturallyironfertilizedregionofkergueleninthesouthernocean
AT jras pigmentselementalcompositioncnpandsiandstoichiometryofparticulatematterinthenaturallyironfertilizedregionofkergueleninthesouthernocean
AT vcornetbarthaux pigmentselementalcompositioncnpandsiandstoichiometryofparticulatematterinthenaturallyironfertilizedregionofkergueleninthesouthernocean
AT sheliasnunige pigmentselementalcompositioncnpandsiandstoichiometryofparticulatematterinthenaturallyironfertilizedregionofkergueleninthesouthernocean
AT bqueguiner pigmentselementalcompositioncnpandsiandstoichiometryofparticulatematterinthenaturallyironfertilizedregionofkergueleninthesouthernocean
_version_ 1725512346091126784