Una descomposición convexa

Dada una colección P de puntos en el plano, una descomposición convexa de P es un conjunto de polígonos convexos con vértices en P que satisfacen lo siguiente: La unión de todos los elementos de es el cierre convexo de P, cada elemento de es vacío (no contiene a ningún otro elemento de P en su inter...

Full description

Bibliographic Details
Main Authors: Mario Lomelí-Haro, Verónica Borja M., J. Alejandro Hernández T.
Format: Article
Language:Spanish
Published: Universidad Industrial de Santander 2014-10-01
Series:Revista Integración
Subjects:
Online Access:https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4381
Description
Summary:Dada una colección P de puntos en el plano, una descomposición convexa de P es un conjunto de polígonos convexos con vértices en P que satisfacen lo siguiente: La unión de todos los elementos de es el cierre convexo de P, cada elemento de es vacío (no contiene a ningún otro elemento de P en su interior) y para cualesquiera 2 elementos diferentes en sus interiores son disjuntos (se intersecarán en a lo más una arista). Únicamente se sabe que existen descomposiciones convexas con a lo más 7n/5 elementos para toda colección de n puntos. En este trabajo diremos cómo obtener una descomposición convexa específica de P con a lo más 3n/2 elementos. Para citar este artículo: M. Lomelí-Haro, V. Borja, J.A. Hernández, Una descomposición convexa, Rev. Integr. Temas Mat. 32 (2014), no. 2, 169-180.
ISSN:0120-419X
2145-8472