Functional Consequences of the Variable Stoichiometry of the Kv1.3-KCNE4 Complex

The voltage-gated potassium channel Kv1.3 plays a crucial role during the immune response. The channel forms oligomeric complexes by associating with several modulatory subunits. KCNE4, one of the five members of the KCNE family, binds to Kv1.3, altering channel activity and membrane expression. The...

Full description

Bibliographic Details
Main Authors: Laura Solé, Daniel Sastre, Magalí Colomer-Molera, Albert Vallejo-Gracia, Sara R. Roig, Mireia Pérez-Verdaguer, Pilar Lillo, Michael M. Tamkun, Antonio Felipe
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Cells
Subjects:
Online Access:https://www.mdpi.com/2073-4409/9/5/1128
id doaj-483738fa00004441acf88a18a4ccd908
record_format Article
spelling doaj-483738fa00004441acf88a18a4ccd9082020-11-25T02:39:14ZengMDPI AGCells2073-44092020-05-0191128112810.3390/cells9051128Functional Consequences of the Variable Stoichiometry of the Kv1.3-KCNE4 ComplexLaura Solé0Daniel Sastre1Magalí Colomer-Molera2Albert Vallejo-Gracia3Sara R. Roig4Mireia Pérez-Verdaguer5Pilar Lillo6Michael M. Tamkun7Antonio Felipe8Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, SpainMolecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, SpainMolecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, SpainMolecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, SpainMolecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, SpainMolecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, SpainInstituto de Química Física Rocasolano, CSIC, 28006 Madrid, SpainDepartment of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USAMolecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, SpainThe voltage-gated potassium channel Kv1.3 plays a crucial role during the immune response. The channel forms oligomeric complexes by associating with several modulatory subunits. KCNE4, one of the five members of the KCNE family, binds to Kv1.3, altering channel activity and membrane expression. The association of KCNEs with Kv channels is the subject of numerous studies, and the stoichiometry of such associations has led to an ongoing debate. The number of KCNE4 subunits that can interact and modulate Kv1.3 is unknown. KCNE4 transfers important elements to the Kv1.3 channelosome that negatively regulate channel function, thereby fine-tuning leukocyte physiology. The aim of this study was to determine the stoichiometry of the functional Kv1.3-KCNE4 complex. We demonstrate that as many as four KCNE4 subunits can bind to the same Kv1.3 channel, indicating a variable Kv1.3-KCNE4 stoichiometry. While increasing the number of KCNE4 subunits steadily slowed the activation of the channel and decreased the abundance of Kv1.3 at the cell surface, the presence of a single KCNE4 peptide was sufficient for the cooperative enhancement of the inactivating function of the channel. This variable architecture, which depends on KCNE4 availability, differentially affects Kv1.3 function. Therefore, our data indicate that the physiological remodeling of KCNE4 triggers functional consequences for Kv1.3, thus affecting cell physiology.https://www.mdpi.com/2073-4409/9/5/1128potassium channelsimmune systemoligomeric complexregulatory subunits
collection DOAJ
language English
format Article
sources DOAJ
author Laura Solé
Daniel Sastre
Magalí Colomer-Molera
Albert Vallejo-Gracia
Sara R. Roig
Mireia Pérez-Verdaguer
Pilar Lillo
Michael M. Tamkun
Antonio Felipe
spellingShingle Laura Solé
Daniel Sastre
Magalí Colomer-Molera
Albert Vallejo-Gracia
Sara R. Roig
Mireia Pérez-Verdaguer
Pilar Lillo
Michael M. Tamkun
Antonio Felipe
Functional Consequences of the Variable Stoichiometry of the Kv1.3-KCNE4 Complex
Cells
potassium channels
immune system
oligomeric complex
regulatory subunits
author_facet Laura Solé
Daniel Sastre
Magalí Colomer-Molera
Albert Vallejo-Gracia
Sara R. Roig
Mireia Pérez-Verdaguer
Pilar Lillo
Michael M. Tamkun
Antonio Felipe
author_sort Laura Solé
title Functional Consequences of the Variable Stoichiometry of the Kv1.3-KCNE4 Complex
title_short Functional Consequences of the Variable Stoichiometry of the Kv1.3-KCNE4 Complex
title_full Functional Consequences of the Variable Stoichiometry of the Kv1.3-KCNE4 Complex
title_fullStr Functional Consequences of the Variable Stoichiometry of the Kv1.3-KCNE4 Complex
title_full_unstemmed Functional Consequences of the Variable Stoichiometry of the Kv1.3-KCNE4 Complex
title_sort functional consequences of the variable stoichiometry of the kv1.3-kcne4 complex
publisher MDPI AG
series Cells
issn 2073-4409
publishDate 2020-05-01
description The voltage-gated potassium channel Kv1.3 plays a crucial role during the immune response. The channel forms oligomeric complexes by associating with several modulatory subunits. KCNE4, one of the five members of the KCNE family, binds to Kv1.3, altering channel activity and membrane expression. The association of KCNEs with Kv channels is the subject of numerous studies, and the stoichiometry of such associations has led to an ongoing debate. The number of KCNE4 subunits that can interact and modulate Kv1.3 is unknown. KCNE4 transfers important elements to the Kv1.3 channelosome that negatively regulate channel function, thereby fine-tuning leukocyte physiology. The aim of this study was to determine the stoichiometry of the functional Kv1.3-KCNE4 complex. We demonstrate that as many as four KCNE4 subunits can bind to the same Kv1.3 channel, indicating a variable Kv1.3-KCNE4 stoichiometry. While increasing the number of KCNE4 subunits steadily slowed the activation of the channel and decreased the abundance of Kv1.3 at the cell surface, the presence of a single KCNE4 peptide was sufficient for the cooperative enhancement of the inactivating function of the channel. This variable architecture, which depends on KCNE4 availability, differentially affects Kv1.3 function. Therefore, our data indicate that the physiological remodeling of KCNE4 triggers functional consequences for Kv1.3, thus affecting cell physiology.
topic potassium channels
immune system
oligomeric complex
regulatory subunits
url https://www.mdpi.com/2073-4409/9/5/1128
work_keys_str_mv AT laurasole functionalconsequencesofthevariablestoichiometryofthekv13kcne4complex
AT danielsastre functionalconsequencesofthevariablestoichiometryofthekv13kcne4complex
AT magalicolomermolera functionalconsequencesofthevariablestoichiometryofthekv13kcne4complex
AT albertvallejogracia functionalconsequencesofthevariablestoichiometryofthekv13kcne4complex
AT sararroig functionalconsequencesofthevariablestoichiometryofthekv13kcne4complex
AT mireiaperezverdaguer functionalconsequencesofthevariablestoichiometryofthekv13kcne4complex
AT pilarlillo functionalconsequencesofthevariablestoichiometryofthekv13kcne4complex
AT michaelmtamkun functionalconsequencesofthevariablestoichiometryofthekv13kcne4complex
AT antoniofelipe functionalconsequencesofthevariablestoichiometryofthekv13kcne4complex
_version_ 1724787525506039808