Topologically Stable Chain Recurrence Classes for Diffeomorphisms

Let <inline-formula><math display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>M</mi></mrow></semantics></math></inline-formula> be a diffeomorphism of a fin...

Full description

Bibliographic Details
Main Author: Manseob Lee
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/11/1912
id doaj-48211e8164bf4676adf1d615ff2c73d7
record_format Article
spelling doaj-48211e8164bf4676adf1d615ff2c73d72020-11-25T03:56:17ZengMDPI AGMathematics2227-73902020-11-0181912191210.3390/math8111912Topologically Stable Chain Recurrence Classes for DiffeomorphismsManseob Lee0Department of Mathematics, Mokwon University, Daejeon 302-729, KoreaLet <inline-formula><math display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>M</mi></mrow></semantics></math></inline-formula> be a diffeomorphism of a finite dimension, smooth compact Riemannian manifold <i>M</i>. In this paper, we demonstrate that if a diffeomorphism <i>f</i> lies within the <inline-formula><math display="inline"><semantics><msup><mi>C</mi><mn>1</mn></msup></semantics></math></inline-formula> interior of the set of all chain recurrence class-topologically stable diffeomorphisms, then the chain recurrence class is hyperbolic.https://www.mdpi.com/2227-7390/8/11/1912topologically stablechain recurrence classgenerichyperbolic
collection DOAJ
language English
format Article
sources DOAJ
author Manseob Lee
spellingShingle Manseob Lee
Topologically Stable Chain Recurrence Classes for Diffeomorphisms
Mathematics
topologically stable
chain recurrence class
generic
hyperbolic
author_facet Manseob Lee
author_sort Manseob Lee
title Topologically Stable Chain Recurrence Classes for Diffeomorphisms
title_short Topologically Stable Chain Recurrence Classes for Diffeomorphisms
title_full Topologically Stable Chain Recurrence Classes for Diffeomorphisms
title_fullStr Topologically Stable Chain Recurrence Classes for Diffeomorphisms
title_full_unstemmed Topologically Stable Chain Recurrence Classes for Diffeomorphisms
title_sort topologically stable chain recurrence classes for diffeomorphisms
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2020-11-01
description Let <inline-formula><math display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>M</mi></mrow></semantics></math></inline-formula> be a diffeomorphism of a finite dimension, smooth compact Riemannian manifold <i>M</i>. In this paper, we demonstrate that if a diffeomorphism <i>f</i> lies within the <inline-formula><math display="inline"><semantics><msup><mi>C</mi><mn>1</mn></msup></semantics></math></inline-formula> interior of the set of all chain recurrence class-topologically stable diffeomorphisms, then the chain recurrence class is hyperbolic.
topic topologically stable
chain recurrence class
generic
hyperbolic
url https://www.mdpi.com/2227-7390/8/11/1912
work_keys_str_mv AT manseoblee topologicallystablechainrecurrenceclassesfordiffeomorphisms
_version_ 1724465879769415680