Topologically Stable Chain Recurrence Classes for Diffeomorphisms
Let <inline-formula><math display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>M</mi></mrow></semantics></math></inline-formula> be a diffeomorphism of a fin...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-11-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/11/1912 |
id |
doaj-48211e8164bf4676adf1d615ff2c73d7 |
---|---|
record_format |
Article |
spelling |
doaj-48211e8164bf4676adf1d615ff2c73d72020-11-25T03:56:17ZengMDPI AGMathematics2227-73902020-11-0181912191210.3390/math8111912Topologically Stable Chain Recurrence Classes for DiffeomorphismsManseob Lee0Department of Mathematics, Mokwon University, Daejeon 302-729, KoreaLet <inline-formula><math display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>M</mi></mrow></semantics></math></inline-formula> be a diffeomorphism of a finite dimension, smooth compact Riemannian manifold <i>M</i>. In this paper, we demonstrate that if a diffeomorphism <i>f</i> lies within the <inline-formula><math display="inline"><semantics><msup><mi>C</mi><mn>1</mn></msup></semantics></math></inline-formula> interior of the set of all chain recurrence class-topologically stable diffeomorphisms, then the chain recurrence class is hyperbolic.https://www.mdpi.com/2227-7390/8/11/1912topologically stablechain recurrence classgenerichyperbolic |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Manseob Lee |
spellingShingle |
Manseob Lee Topologically Stable Chain Recurrence Classes for Diffeomorphisms Mathematics topologically stable chain recurrence class generic hyperbolic |
author_facet |
Manseob Lee |
author_sort |
Manseob Lee |
title |
Topologically Stable Chain Recurrence Classes for Diffeomorphisms |
title_short |
Topologically Stable Chain Recurrence Classes for Diffeomorphisms |
title_full |
Topologically Stable Chain Recurrence Classes for Diffeomorphisms |
title_fullStr |
Topologically Stable Chain Recurrence Classes for Diffeomorphisms |
title_full_unstemmed |
Topologically Stable Chain Recurrence Classes for Diffeomorphisms |
title_sort |
topologically stable chain recurrence classes for diffeomorphisms |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2020-11-01 |
description |
Let <inline-formula><math display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><mi>M</mi><mo>→</mo><mi>M</mi></mrow></semantics></math></inline-formula> be a diffeomorphism of a finite dimension, smooth compact Riemannian manifold <i>M</i>. In this paper, we demonstrate that if a diffeomorphism <i>f</i> lies within the <inline-formula><math display="inline"><semantics><msup><mi>C</mi><mn>1</mn></msup></semantics></math></inline-formula> interior of the set of all chain recurrence class-topologically stable diffeomorphisms, then the chain recurrence class is hyperbolic. |
topic |
topologically stable chain recurrence class generic hyperbolic |
url |
https://www.mdpi.com/2227-7390/8/11/1912 |
work_keys_str_mv |
AT manseoblee topologicallystablechainrecurrenceclassesfordiffeomorphisms |
_version_ |
1724465879769415680 |