Processes Governing Alkaline Groundwater Chemistry within a Fractured Rock (Ophiolitic Mélange) Aquifer Underlying a Seasonally Inhabited Headwater Area in the Aladağlar Range (Adana, Turkey)
The aim of this study was to investigate natural and anthropogenic processes governing the chemical composition of alkaline groundwater within a fractured rock (ophiolitic mélange) aquifer underlying a seasonally inhabited headwater area in the Aladağlar Range (Adana, Turkey). In this aquifer, spati...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi-Wiley
2017-01-01
|
Series: | Geofluids |
Online Access: | http://dx.doi.org/10.1155/2017/3153924 |
id |
doaj-4812db7d6b824e0d9dfdae1d689ffa87 |
---|---|
record_format |
Article |
spelling |
doaj-4812db7d6b824e0d9dfdae1d689ffa872020-11-24T21:25:47ZengHindawi-WileyGeofluids1468-81151468-81232017-01-01201710.1155/2017/31539243153924Processes Governing Alkaline Groundwater Chemistry within a Fractured Rock (Ophiolitic Mélange) Aquifer Underlying a Seasonally Inhabited Headwater Area in the Aladağlar Range (Adana, Turkey)Cüneyt Güler0Geoffrey D. Thyne1Hidayet Tağa2Ümit Yıldırım3Jeoloji Mühendisliği Bölümü, Mersin Üniversitesi, Çiftlikköy Kampüsü, 33343 Mersin, TurkeyScience Based Solutions, 2317 Mountain Shadow Lane, Laramie, WY 82070, USAJeoloji Mühendisliği Bölümü, Mersin Üniversitesi, Çiftlikköy Kampüsü, 33343 Mersin, TurkeyJeoloji Mühendisliği Bölümü, Mersin Üniversitesi, Çiftlikköy Kampüsü, 33343 Mersin, TurkeyThe aim of this study was to investigate natural and anthropogenic processes governing the chemical composition of alkaline groundwater within a fractured rock (ophiolitic mélange) aquifer underlying a seasonally inhabited headwater area in the Aladağlar Range (Adana, Turkey). In this aquifer, spatiotemporal patterns of groundwater flow and chemistry were investigated during dry (October 2011) and wet (May 2012) seasons utilizing 25 shallow hand-dug wells. In addition, representative samples of snow, rock, and soil were collected and analyzed to constrain the PHREEQC inverse geochemical models used for simulating water-rock interaction (WRI) processes. Hydrochemistry of the aquifer shows a strong interseasonal variability where Mg–HCO3 and Mg–Ca–HCO3 water types are prevalent, reflecting the influence of ophiolitic and carbonate rocks on local groundwater chemistry. R-mode factor analysis of hydrochemical data hints at geochemical processes taking place in the groundwater system, that is, WRI involving Ca- and Si-bearing phases; WRI involving amorphous oxyhydroxides and clay minerals; WRI involving Mg-bearing phases; and atmospheric/anthropogenic inputs. Results from the PHREEQC modeling suggested that hydrogeochemical evolution is governed by weathering of primary minerals (calcite, chrysotile, forsterite, and chromite), precipitation of secondary minerals (dolomite, quartz, clinochlore, and Fe/Cr oxides), atmospheric/anthropogenic inputs (halite), and seasonal dilution from recharge.http://dx.doi.org/10.1155/2017/3153924 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Cüneyt Güler Geoffrey D. Thyne Hidayet Tağa Ümit Yıldırım |
spellingShingle |
Cüneyt Güler Geoffrey D. Thyne Hidayet Tağa Ümit Yıldırım Processes Governing Alkaline Groundwater Chemistry within a Fractured Rock (Ophiolitic Mélange) Aquifer Underlying a Seasonally Inhabited Headwater Area in the Aladağlar Range (Adana, Turkey) Geofluids |
author_facet |
Cüneyt Güler Geoffrey D. Thyne Hidayet Tağa Ümit Yıldırım |
author_sort |
Cüneyt Güler |
title |
Processes Governing Alkaline Groundwater Chemistry within a Fractured Rock (Ophiolitic Mélange) Aquifer Underlying a Seasonally Inhabited Headwater Area in the Aladağlar Range (Adana, Turkey) |
title_short |
Processes Governing Alkaline Groundwater Chemistry within a Fractured Rock (Ophiolitic Mélange) Aquifer Underlying a Seasonally Inhabited Headwater Area in the Aladağlar Range (Adana, Turkey) |
title_full |
Processes Governing Alkaline Groundwater Chemistry within a Fractured Rock (Ophiolitic Mélange) Aquifer Underlying a Seasonally Inhabited Headwater Area in the Aladağlar Range (Adana, Turkey) |
title_fullStr |
Processes Governing Alkaline Groundwater Chemistry within a Fractured Rock (Ophiolitic Mélange) Aquifer Underlying a Seasonally Inhabited Headwater Area in the Aladağlar Range (Adana, Turkey) |
title_full_unstemmed |
Processes Governing Alkaline Groundwater Chemistry within a Fractured Rock (Ophiolitic Mélange) Aquifer Underlying a Seasonally Inhabited Headwater Area in the Aladağlar Range (Adana, Turkey) |
title_sort |
processes governing alkaline groundwater chemistry within a fractured rock (ophiolitic mélange) aquifer underlying a seasonally inhabited headwater area in the aladağlar range (adana, turkey) |
publisher |
Hindawi-Wiley |
series |
Geofluids |
issn |
1468-8115 1468-8123 |
publishDate |
2017-01-01 |
description |
The aim of this study was to investigate natural and anthropogenic processes governing the chemical composition of alkaline groundwater within a fractured rock (ophiolitic mélange) aquifer underlying a seasonally inhabited headwater area in the Aladağlar Range (Adana, Turkey). In this aquifer, spatiotemporal patterns of groundwater flow and chemistry were investigated during dry (October 2011) and wet (May 2012) seasons utilizing 25 shallow hand-dug wells. In addition, representative samples of snow, rock, and soil were collected and analyzed to constrain the PHREEQC inverse geochemical models used for simulating water-rock interaction (WRI) processes. Hydrochemistry of the aquifer shows a strong interseasonal variability where Mg–HCO3 and Mg–Ca–HCO3 water types are prevalent, reflecting the influence of ophiolitic and carbonate rocks on local groundwater chemistry. R-mode factor analysis of hydrochemical data hints at geochemical processes taking place in the groundwater system, that is, WRI involving Ca- and Si-bearing phases; WRI involving amorphous oxyhydroxides and clay minerals; WRI involving Mg-bearing phases; and atmospheric/anthropogenic inputs. Results from the PHREEQC modeling suggested that hydrogeochemical evolution is governed by weathering of primary minerals (calcite, chrysotile, forsterite, and chromite), precipitation of secondary minerals (dolomite, quartz, clinochlore, and Fe/Cr oxides), atmospheric/anthropogenic inputs (halite), and seasonal dilution from recharge. |
url |
http://dx.doi.org/10.1155/2017/3153924 |
work_keys_str_mv |
AT cuneytguler processesgoverningalkalinegroundwaterchemistrywithinafracturedrockophioliticmelangeaquiferunderlyingaseasonallyinhabitedheadwaterareainthealadaglarrangeadanaturkey AT geoffreydthyne processesgoverningalkalinegroundwaterchemistrywithinafracturedrockophioliticmelangeaquiferunderlyingaseasonallyinhabitedheadwaterareainthealadaglarrangeadanaturkey AT hidayettaga processesgoverningalkalinegroundwaterchemistrywithinafracturedrockophioliticmelangeaquiferunderlyingaseasonallyinhabitedheadwaterareainthealadaglarrangeadanaturkey AT umityıldırım processesgoverningalkalinegroundwaterchemistrywithinafracturedrockophioliticmelangeaquiferunderlyingaseasonallyinhabitedheadwaterareainthealadaglarrangeadanaturkey |
_version_ |
1725982808581603328 |