The holographic paradigm of hadron dynamics for medium modified nuclear matters

We propose a medium-modified holographic-hadron dynamics suitable for the study of symmetric nuclear matter, with a key property of a simple law for the evolution of the five dimensional mass with the scalar background field. We show that the model satisfies symmetric nuclear matter constraints, nam...

Full description

Bibliographic Details
Main Authors: W. de Paula, Chueng-Ryong Ji, J.P.B.C. de Melo, T. Frederico, O. Lourenço
Format: Article
Language:English
Published: Elsevier 2020-04-01
Series:Physics Letters B
Online Access:http://www.sciencedirect.com/science/article/pii/S037026932030143X
Description
Summary:We propose a medium-modified holographic-hadron dynamics suitable for the study of symmetric nuclear matter, with a key property of a simple law for the evolution of the five dimensional mass with the scalar background field. We show that the model satisfies symmetric nuclear matter constraints, namely, incompressibility and density dependence of the pressure, with only three free adjustable parameters fitted to the free nucleon mass and the nuclear matter saturation properties. We found that the holographic nucleon swells and the UV behavior of the associated string amplitude is damped, with the scaling property at short distances softened. Both effects can also generate observable consequences reflecting an average leakage of partons to the nuclear medium when density is increased, in the route towards the deconfinement of the internal nucleon degrees of freedom. Keywords: AdS/QCD models, Nuclear matter, Equations of state
ISSN:0370-2693