Real-Time Performance Evaluation of IEEE 802.11p EDCA Mechanism for IoV in a Highway Environment

With the development of 5G, the Internet of Vehicles (IoV) evolves to be one important component of the Internet of Things (IoT), where vehicles and public infrastructure communicate with each other through a IEEE 802.11p EDCA mechanism to support four access categories (ACs) to access a channel. Du...

Full description

Bibliographic Details
Main Authors: Hong Li, Qiong Wu, Jing Fan, Qiang Fan, Bo Chang, Guilu Wu
Format: Article
Language:English
Published: Hindawi-Wiley 2020-01-01
Series:Wireless Communications and Mobile Computing
Online Access:http://dx.doi.org/10.1155/2020/8848477
Description
Summary:With the development of 5G, the Internet of Vehicles (IoV) evolves to be one important component of the Internet of Things (IoT), where vehicles and public infrastructure communicate with each other through a IEEE 802.11p EDCA mechanism to support four access categories (ACs) to access a channel. Due to the mobility of the vehicles, the network topology is time varying and thus incurs a dynamic network performance. There are many works on the stationary performance of 802.11p EDCA and some on real-time performance, but existing work does not consider real-time performance under extreme highway scenario. In this paper, we consider four ACs defined in the 802.11p EDCA mechanism to evaluate the limit of the real-time network performance in an extreme highway scenario, i.e., all vehicles keep the minimum safety distance between each other. The performance of the model has been demonstrated through simulations. It is found that some ACs can meet real-time requirements while others cannot in the extreme scenario.
ISSN:1530-8669
1530-8677