Vesiculation of biological membrane driven by curvature induced frustrations in membrane orientational ordering

Dalija Jesenek,1 Šarká Perutková,2 Wojciech Góźdź,3 Veronika Kralj-Iglič,4 Aleš Iglič,2,5 Samo Kralj1,61Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia; 2Laboratory of Biophysics, Faculty of E...

Full description

Bibliographic Details
Main Authors: Jesenek D, Perutková S, Góźdź W, Kralj-Iglič V, Iglič A, Kralj S
Format: Article
Language:English
Published: Dove Medical Press 2013-02-01
Series:International Journal of Nanomedicine
Online Access:http://www.dovepress.com/vesiculation-of-biological-membrane-driven-by-curvature-induced-frustr-a12253
id doaj-47f3fcaeb9b64e9a83dc38657874d39c
record_format Article
spelling doaj-47f3fcaeb9b64e9a83dc38657874d39c2020-11-25T00:36:43ZengDove Medical PressInternational Journal of Nanomedicine1176-91141178-20132013-02-012013default677687Vesiculation of biological membrane driven by curvature induced frustrations in membrane orientational orderingJesenek DPerutková SGóźdź WKralj-Iglič VIglič AKralj SDalija Jesenek,1 Šarká Perutková,2 Wojciech Góźdź,3 Veronika Kralj-Iglič,4 Aleš Iglič,2,5 Samo Kralj1,61Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia; 2Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia; 3Department of Complex Systems and Chemical Processing of Information, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland; 4Laboratory of Clinical Biophysics, Faculty of Health Studies, University of Ljubljana, Ljubljana, Slovenia; 5Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; 6Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, SloveniaAbstract: Membrane budding often leads to the formation and release of microvesicles. The latter might play an important role in long distance cell-to-cell communication, owing to their ability to move with body fluids. Several mechanisms exist which might trigger the pinching off of globular buds from the parent membrane (vesiculation). In this paper, we consider the theoretical impacts of topological defects (frustrations) on this process in the membranes that exhibit global in-plane orientational order. A Landau–de Gennes theoretical approach is used in terms of tensor orientational order parameters. The impact of membrane shapes on position and the number of defects is analyzed. In studied cases, only defects with winding numbers m = ±1/2 appear, where we refer to the number of defects with m = 1/2 as defects, and with m = –1/2 as anti-defects. It is demonstrated that defects are attracted to regions with maximal positive Gaussian curvature, K. On the contrary, anti-defects are attracted to membrane regions exhibiting minimal negative values of K. We show on membrane structures exhibiting spherical topology that the coexistence of regions with K > 0 and K < 0 might trigger formation of defect–anti-defect pairs for strong enough local membrane curvatures. Critical conditions for triggering pairs are determined in several demonstrative cases. Then the additionally appeared anti-defects are assembled at the membrane neck, where K < 0. Consequent strong local fluctuations of membrane constituent anisotropic molecules might trigger membrane fission neck rupture, enabling a membrane fission process and the release of membrane daughter microvesicles (ie, vesiculation).Keywords: structural transitions, topological defects, membrane microvesicles, membrane curvature, membrane fission, vesiculationhttp://www.dovepress.com/vesiculation-of-biological-membrane-driven-by-curvature-induced-frustr-a12253
collection DOAJ
language English
format Article
sources DOAJ
author Jesenek D
Perutková S
Góźdź W
Kralj-Iglič V
Iglič A
Kralj S
spellingShingle Jesenek D
Perutková S
Góźdź W
Kralj-Iglič V
Iglič A
Kralj S
Vesiculation of biological membrane driven by curvature induced frustrations in membrane orientational ordering
International Journal of Nanomedicine
author_facet Jesenek D
Perutková S
Góźdź W
Kralj-Iglič V
Iglič A
Kralj S
author_sort Jesenek D
title Vesiculation of biological membrane driven by curvature induced frustrations in membrane orientational ordering
title_short Vesiculation of biological membrane driven by curvature induced frustrations in membrane orientational ordering
title_full Vesiculation of biological membrane driven by curvature induced frustrations in membrane orientational ordering
title_fullStr Vesiculation of biological membrane driven by curvature induced frustrations in membrane orientational ordering
title_full_unstemmed Vesiculation of biological membrane driven by curvature induced frustrations in membrane orientational ordering
title_sort vesiculation of biological membrane driven by curvature induced frustrations in membrane orientational ordering
publisher Dove Medical Press
series International Journal of Nanomedicine
issn 1176-9114
1178-2013
publishDate 2013-02-01
description Dalija Jesenek,1 Šarká Perutková,2 Wojciech Góźdź,3 Veronika Kralj-Iglič,4 Aleš Iglič,2,5 Samo Kralj1,61Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia; 2Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia; 3Department of Complex Systems and Chemical Processing of Information, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland; 4Laboratory of Clinical Biophysics, Faculty of Health Studies, University of Ljubljana, Ljubljana, Slovenia; 5Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; 6Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, SloveniaAbstract: Membrane budding often leads to the formation and release of microvesicles. The latter might play an important role in long distance cell-to-cell communication, owing to their ability to move with body fluids. Several mechanisms exist which might trigger the pinching off of globular buds from the parent membrane (vesiculation). In this paper, we consider the theoretical impacts of topological defects (frustrations) on this process in the membranes that exhibit global in-plane orientational order. A Landau–de Gennes theoretical approach is used in terms of tensor orientational order parameters. The impact of membrane shapes on position and the number of defects is analyzed. In studied cases, only defects with winding numbers m = ±1/2 appear, where we refer to the number of defects with m = 1/2 as defects, and with m = –1/2 as anti-defects. It is demonstrated that defects are attracted to regions with maximal positive Gaussian curvature, K. On the contrary, anti-defects are attracted to membrane regions exhibiting minimal negative values of K. We show on membrane structures exhibiting spherical topology that the coexistence of regions with K > 0 and K < 0 might trigger formation of defect–anti-defect pairs for strong enough local membrane curvatures. Critical conditions for triggering pairs are determined in several demonstrative cases. Then the additionally appeared anti-defects are assembled at the membrane neck, where K < 0. Consequent strong local fluctuations of membrane constituent anisotropic molecules might trigger membrane fission neck rupture, enabling a membrane fission process and the release of membrane daughter microvesicles (ie, vesiculation).Keywords: structural transitions, topological defects, membrane microvesicles, membrane curvature, membrane fission, vesiculation
url http://www.dovepress.com/vesiculation-of-biological-membrane-driven-by-curvature-induced-frustr-a12253
work_keys_str_mv AT jesenekd vesiculationofbiologicalmembranedrivenbycurvatureinducedfrustrationsinmembraneorientationalordering
AT perutkovampaacutes vesiculationofbiologicalmembranedrivenbycurvatureinducedfrustrationsinmembraneorientationalordering
AT gampoacutezdzw vesiculationofbiologicalmembranedrivenbycurvatureinducedfrustrationsinmembraneorientationalordering
AT kraljiglicv vesiculationofbiologicalmembranedrivenbycurvatureinducedfrustrationsinmembraneorientationalordering
AT iglica vesiculationofbiologicalmembranedrivenbycurvatureinducedfrustrationsinmembraneorientationalordering
AT kraljs vesiculationofbiologicalmembranedrivenbycurvatureinducedfrustrationsinmembraneorientationalordering
_version_ 1725303991463575552