Metagenome sequencing to analyze the impacts of thiamine supplementation on ruminal fungi in dairy cows fed high-concentrate diets

Abstract Ruminal thiamine deficiencies occur when dairy cows are overfed with high-concentrate diet, and thiamine supplementation has been proved to attenuate high-concentrate diet induced SARA. However, there is limited knowledge of the relationship between thiamine supplementation in high-concentr...

Full description

Bibliographic Details
Main Authors: Fuguang Xue, Xuemei Nan, Fuyu Sun, Xiaohua Pan, Yuming Guo, Linshu Jiang, Benhai Xiong
Format: Article
Language:English
Published: SpringerOpen 2018-10-01
Series:AMB Express
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13568-018-0680-6
Description
Summary:Abstract Ruminal thiamine deficiencies occur when dairy cows are overfed with high-concentrate diet, and thiamine supplementation has been proved to attenuate high-concentrate diet induced SARA. However, there is limited knowledge of the relationship between thiamine supplementation in high-concentrate diets and ruminal fungi. In order to investigate the impacts of thiamine supplementation on ruminal fungi, twelve Chinese Holstein dairy cows were randomly assigned into three treatments: control diet (CON; 20% starch, dry matter basis), high-concentrate diet (HC; 33.2% starch, dry matter basis) and high-concentrate diet supplemented with 180 mg thiamine/kg dry matter intake. Dry matter intake and milk production were recorded during the experimental periods. On day 21, rumen fluid samples were collected at 3 h postfeeding and ruminal pH, thiamine concentration and volatile fatty acids were measured. Metagenome sequencing method was conducted to detect ruminal fungi composition. Feeding HC significantly decreased dry matter intake, milk production, ruminal pH, ruminal acetate and thiamine concentration, however, significantly increased propionate and isovalerate (P < 0.05). These changes were inversed by thiamine supplementation (P < 0.05). Totally, seven phyla and almost 1050 species of rumen fungi were identified across all samples in which especially, 3 genera and 10 species of strictly anaerobic fungi phylum Neocallimastigomycota was found. Principal coordinate analysis indicated that feeding HC and thiamine supplementation caused a significant inverse in ruminal fungi composition. Feeding HC significantly decreased the abundance of fungi compared with CON (P < 0.05) while thiamine supplementation significantly increased the abundance of ruminal fungi (P < 0.05). These results indicated that thiamine supplementation may effectively attenuate rumen metabolic disorder caused by HC diet through buffering the ruminal pH, shifting the rumen fermentation pattern and increasing the abundance of ruminal fungi. The findings in this study could therefore contribute to the further understanding of the mechanism of thiamine’s function in dairy cows.
ISSN:2191-0855