Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification
The authors present an automated design approach to propose a new neural network architecture for seismic data analysis. The new architecture classifies multiple seismic reflection datasets at extremely low computational cost compared with conventional architectures for image classification.
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2020-07-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-020-17123-6 |