Full-Body Locomotion Reconstruction of Virtual Characters Using a Single Inertial Measurement Unit

This paper presents a method of reconstructing full-body locomotion sequences for virtual characters in real-time, using data from a single inertial measurement unit (IMU). This process can be characterized by its difficulty because of the need to reconstruct a high number of degrees of freedom (DOF...

Full description

Bibliographic Details
Main Author: Christos Mousas
Format: Article
Language:English
Published: MDPI AG 2017-11-01
Series:Sensors
Subjects:
HMM
IMU
Online Access:https://www.mdpi.com/1424-8220/17/11/2589
Description
Summary:This paper presents a method of reconstructing full-body locomotion sequences for virtual characters in real-time, using data from a single inertial measurement unit (IMU). This process can be characterized by its difficulty because of the need to reconstruct a high number of degrees of freedom (DOFs) from a very low number of DOFs. To solve such a complex problem, the presented method is divided into several steps. The user’s full-body locomotion and the IMU’s data are recorded simultaneously. Then, the data is preprocessed in such a way that would be handled more efficiently. By developing a hierarchical multivariate hidden Markov model with reactive interpolation functionality the system learns the structure of the motion sequences. Specifically, the phases of the locomotion sequence are assigned in the higher hierarchical level, and the frame structure of the motion sequences are assigned at the lower hierarchical level. During the runtime of the method, the forward algorithm is used for reconstructing the full-body motion of a virtual character. Firstly, the method predicts the phase where the input motion belongs (higher hierarchical level). Secondly, the method predicts the closest trajectories and their progression and interpolates the most probable of them to reconstruct the virtual character’s full-body motion (lower hierarchical level). Evaluating the proposed method shows that it works on reasonable framerates and minimizes the reconstruction errors compared with previous approaches.
ISSN:1424-8220