An Effective Training Scheme for Deep Neural Network in Edge Computing Enabled Internet of Medical Things (IoMT) Systems
At present times, the real-time requirement on the multiaccess healthcare monitoring system, information mining, and efficient disease diagnosis of health conditions is a difficult process. The recent advances in information technology and the internet of medical things (IoMT) have fostered extensiv...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9109259/ |
id |
doaj-47b11d30ecbd484cb2228bd7e13f818b |
---|---|
record_format |
Article |
spelling |
doaj-47b11d30ecbd484cb2228bd7e13f818b2021-03-30T02:57:26ZengIEEEIEEE Access2169-35362020-01-01810711210712310.1109/ACCESS.2020.30003229109259An Effective Training Scheme for Deep Neural Network in Edge Computing Enabled Internet of Medical Things (IoMT) SystemsIrina Valeryevna Pustokhina0Denis Alexandrovich Pustokhin1Deepak Gupta2https://orcid.org/0000-0002-3019-7161Ashish Khanna3K. Shankar4https://orcid.org/0000-0002-2803-3846Gia Nhu Nguyen5https://orcid.org/0000-0003-4267-3900Department of Entrepreneurship and Logistics, Plekhanov Russian University of Economics, Moscow, RussiaDepartment of Logistics, State University of Management, Moscow, RussiaDepartment of Computer Science and Engineering, Maharaja Agrasen Institute of Technology, Delhi, IndiaDepartment of Computer Science and Engineering, Maharaja Agrasen Institute of Technology, Delhi, IndiaDepartment of Computer Applications, Alagappa University, Karaikudi, IndiaGraduate School, Duy Tan University, Da Nang, VietnamAt present times, the real-time requirement on the multiaccess healthcare monitoring system, information mining, and efficient disease diagnosis of health conditions is a difficult process. The recent advances in information technology and the internet of medical things (IoMT) have fostered extensive utilization of the smart system. A complex, 24/7 healthcare service is needed for effective and trustworthy monitoring of patients on a daily basis. To accomplish this need, edge computing and cloud platforms are highly required to satisfy the requirements of smart healthcare systems. This paper presents a new effective training scheme for the deep neural network (DNN), called ETS-DNN model in edge computing enabled IoMT system. The proposed ETS-DNN intends to facilitate timely data collection and processing to make timely decisions using the patterns that exist in the data. Initially, the IoMT devices sense the patient's data and transfer the captured data to edge computing, which executes the ETS-DNN model to diagnose it. The proposed ETS-DNN model incorporates a Hybrid Modified Water Wave Optimization (HMWWO) technique to tune the parameters of the DNN structure, which comprises of several autoencoder layers cascaded to a softmax (SM) layer. The SM classification layer is placed at the end of the DNN to perform the classification task. The HMWWO algorithm integrates the MWWO technique with limited memory Broyden-Fletcher-Goldfarb-Shannon (L-BFGS). Once the ETS-DNN model generates the report in edge computing, then it will be sent to the cloud server, which is then forwarded to the healthcare professionals, hospital database, and concerned patients. The proposed ETS-DNN model intends to facilitate timely data collection and processing to identify the patterns exist in the data. An extensive set of experimental analysis takes place and the results are investigated under several aspects. The simulation outcome pointed out the superior characteristics of the ETS-DNN model over the compared methods.https://ieeexplore.ieee.org/document/9109259/Deep neural networkInternet of Medical Thingsedge computingtraining schemehealthcareoptimization |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Irina Valeryevna Pustokhina Denis Alexandrovich Pustokhin Deepak Gupta Ashish Khanna K. Shankar Gia Nhu Nguyen |
spellingShingle |
Irina Valeryevna Pustokhina Denis Alexandrovich Pustokhin Deepak Gupta Ashish Khanna K. Shankar Gia Nhu Nguyen An Effective Training Scheme for Deep Neural Network in Edge Computing Enabled Internet of Medical Things (IoMT) Systems IEEE Access Deep neural network Internet of Medical Things edge computing training scheme healthcare optimization |
author_facet |
Irina Valeryevna Pustokhina Denis Alexandrovich Pustokhin Deepak Gupta Ashish Khanna K. Shankar Gia Nhu Nguyen |
author_sort |
Irina Valeryevna Pustokhina |
title |
An Effective Training Scheme for Deep Neural Network in Edge Computing Enabled Internet of Medical Things (IoMT) Systems |
title_short |
An Effective Training Scheme for Deep Neural Network in Edge Computing Enabled Internet of Medical Things (IoMT) Systems |
title_full |
An Effective Training Scheme for Deep Neural Network in Edge Computing Enabled Internet of Medical Things (IoMT) Systems |
title_fullStr |
An Effective Training Scheme for Deep Neural Network in Edge Computing Enabled Internet of Medical Things (IoMT) Systems |
title_full_unstemmed |
An Effective Training Scheme for Deep Neural Network in Edge Computing Enabled Internet of Medical Things (IoMT) Systems |
title_sort |
effective training scheme for deep neural network in edge computing enabled internet of medical things (iomt) systems |
publisher |
IEEE |
series |
IEEE Access |
issn |
2169-3536 |
publishDate |
2020-01-01 |
description |
At present times, the real-time requirement on the multiaccess healthcare monitoring system, information mining, and efficient disease diagnosis of health conditions is a difficult process. The recent advances in information technology and the internet of medical things (IoMT) have fostered extensive utilization of the smart system. A complex, 24/7 healthcare service is needed for effective and trustworthy monitoring of patients on a daily basis. To accomplish this need, edge computing and cloud platforms are highly required to satisfy the requirements of smart healthcare systems. This paper presents a new effective training scheme for the deep neural network (DNN), called ETS-DNN model in edge computing enabled IoMT system. The proposed ETS-DNN intends to facilitate timely data collection and processing to make timely decisions using the patterns that exist in the data. Initially, the IoMT devices sense the patient's data and transfer the captured data to edge computing, which executes the ETS-DNN model to diagnose it. The proposed ETS-DNN model incorporates a Hybrid Modified Water Wave Optimization (HMWWO) technique to tune the parameters of the DNN structure, which comprises of several autoencoder layers cascaded to a softmax (SM) layer. The SM classification layer is placed at the end of the DNN to perform the classification task. The HMWWO algorithm integrates the MWWO technique with limited memory Broyden-Fletcher-Goldfarb-Shannon (L-BFGS). Once the ETS-DNN model generates the report in edge computing, then it will be sent to the cloud server, which is then forwarded to the healthcare professionals, hospital database, and concerned patients. The proposed ETS-DNN model intends to facilitate timely data collection and processing to identify the patterns exist in the data. An extensive set of experimental analysis takes place and the results are investigated under several aspects. The simulation outcome pointed out the superior characteristics of the ETS-DNN model over the compared methods. |
topic |
Deep neural network Internet of Medical Things edge computing training scheme healthcare optimization |
url |
https://ieeexplore.ieee.org/document/9109259/ |
work_keys_str_mv |
AT irinavaleryevnapustokhina aneffectivetrainingschemefordeepneuralnetworkinedgecomputingenabledinternetofmedicalthingsiomtsystems AT denisalexandrovichpustokhin aneffectivetrainingschemefordeepneuralnetworkinedgecomputingenabledinternetofmedicalthingsiomtsystems AT deepakgupta aneffectivetrainingschemefordeepneuralnetworkinedgecomputingenabledinternetofmedicalthingsiomtsystems AT ashishkhanna aneffectivetrainingschemefordeepneuralnetworkinedgecomputingenabledinternetofmedicalthingsiomtsystems AT kshankar aneffectivetrainingschemefordeepneuralnetworkinedgecomputingenabledinternetofmedicalthingsiomtsystems AT gianhunguyen aneffectivetrainingschemefordeepneuralnetworkinedgecomputingenabledinternetofmedicalthingsiomtsystems AT irinavaleryevnapustokhina effectivetrainingschemefordeepneuralnetworkinedgecomputingenabledinternetofmedicalthingsiomtsystems AT denisalexandrovichpustokhin effectivetrainingschemefordeepneuralnetworkinedgecomputingenabledinternetofmedicalthingsiomtsystems AT deepakgupta effectivetrainingschemefordeepneuralnetworkinedgecomputingenabledinternetofmedicalthingsiomtsystems AT ashishkhanna effectivetrainingschemefordeepneuralnetworkinedgecomputingenabledinternetofmedicalthingsiomtsystems AT kshankar effectivetrainingschemefordeepneuralnetworkinedgecomputingenabledinternetofmedicalthingsiomtsystems AT gianhunguyen effectivetrainingschemefordeepneuralnetworkinedgecomputingenabledinternetofmedicalthingsiomtsystems |
_version_ |
1724184293070077952 |