Summary: | Due to the fact that the dynamic medical material distribution is vital to the quick response to urgent demand when the Ebola virus occurs, the optimal distribution approach is explored according to the Ebola virus diffusion rule and different severity of the epidemic. First, we choose the more serious epidemic state of Sierra Leone in West Africa as the research object and the SIQR (susceptible, infected, quarantined, required) epidemic model with pulse vaccination is introduced to describe the Ebola diffusion rule and obtain the demanded vaccine and drug in each pulse. Based on the SIQR model, thirteen areas in Sierra Leone are classified into three emergency levels by clustering analysis. Then a dynamic medical material distribution model is formulated, with goals of both reducing the transportation cost and shortages. The results indicate that the proposed approach can make an outstanding contribution to fight against the Ebola virus.
|