A Variational Method for Multivalued Boundary Value Problems
In this paper, we investigate the existence of solution for differential systems involving a ϕ−Laplacian operator which incorporates as a special case the well-known p−Laplacian operator. In this purpose, we use a variational method which relies on Szulkin’s critical point theory. We obtain the exis...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2020/8463263 |
id |
doaj-47a392ab7e1547e6a4d350c15f6081ac |
---|---|
record_format |
Article |
spelling |
doaj-47a392ab7e1547e6a4d350c15f6081ac2020-11-24T21:39:51ZengHindawi LimitedAbstract and Applied Analysis1085-33751687-04092020-01-01202010.1155/2020/84632638463263A Variational Method for Multivalued Boundary Value ProblemsDroh Arsène Béhi0Assohoun Adjé1UFR Mathématiques et Informatique, Université Félix Houphouet Boigny, Cocody, Abidjan 22 BP 582, Côte d’IvoireUFR Mathématiques et Informatique, Université Félix Houphouet Boigny, Cocody, Abidjan 22 BP 582, Côte d’IvoireIn this paper, we investigate the existence of solution for differential systems involving a ϕ−Laplacian operator which incorporates as a special case the well-known p−Laplacian operator. In this purpose, we use a variational method which relies on Szulkin’s critical point theory. We obtain the existence of solution when the corresponding Euler–Lagrange functional is coercive.http://dx.doi.org/10.1155/2020/8463263 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Droh Arsène Béhi Assohoun Adjé |
spellingShingle |
Droh Arsène Béhi Assohoun Adjé A Variational Method for Multivalued Boundary Value Problems Abstract and Applied Analysis |
author_facet |
Droh Arsène Béhi Assohoun Adjé |
author_sort |
Droh Arsène Béhi |
title |
A Variational Method for Multivalued Boundary Value Problems |
title_short |
A Variational Method for Multivalued Boundary Value Problems |
title_full |
A Variational Method for Multivalued Boundary Value Problems |
title_fullStr |
A Variational Method for Multivalued Boundary Value Problems |
title_full_unstemmed |
A Variational Method for Multivalued Boundary Value Problems |
title_sort |
variational method for multivalued boundary value problems |
publisher |
Hindawi Limited |
series |
Abstract and Applied Analysis |
issn |
1085-3375 1687-0409 |
publishDate |
2020-01-01 |
description |
In this paper, we investigate the existence of solution for differential systems involving a ϕ−Laplacian operator which incorporates as a special case the well-known p−Laplacian operator. In this purpose, we use a variational method which relies on Szulkin’s critical point theory. We obtain the existence of solution when the corresponding Euler–Lagrange functional is coercive. |
url |
http://dx.doi.org/10.1155/2020/8463263 |
work_keys_str_mv |
AT droharsenebehi avariationalmethodformultivaluedboundaryvalueproblems AT assohounadje avariationalmethodformultivaluedboundaryvalueproblems AT droharsenebehi variationalmethodformultivaluedboundaryvalueproblems AT assohounadje variationalmethodformultivaluedboundaryvalueproblems |
_version_ |
1716682040665964544 |