Summary: | Background: In Type 1 diabetes, the insulin-producing β-cells within the pancreatic islets of Langerhans are destroyed. We showed previously that immunotherapy with Bacillus Calmette-Guerin (BCG) or complete Freund's adjuvant (CFA) of non-obese diabetic (NOD) mice can prevent disease process and pancreatic β-cell loss. This was associated with increased islet Regenerating (Reg) genes expression, and elevated IL-22-producing Th17 T-cells in the pancreas.
Results: We hypothesized that IL-22 was responsible for the increased Reg gene expression in the pancreas. We therefore quantified the Reg1, Reg2, and Reg 3δ (INGAP) mRNA expression in isolated pre-diabetic NOD islets treated with IL-22. We measured IL-22, and IL-22 receptor(R)- α mRNA expression in the pancreas and spleen of pre-diabetic and diabetic NOD mice. Our results showed: 1) Reg1 and Reg2 mRNA abundance to be significantly increased in IL-22-treated islets in vitro; 2) IL-22 mRNA expression in the pre-diabetic mouse pancreas increased with time following CFA treatment; 3) a reduced expression of IL-22R α following CFA treatment; 4) a down-regulation in Reg1 and Reg 2 mRNA expression in the pancreas of pre-diabetic mice injected with an IL-22 neutralizing antibody; and 5) an increased islet β-cell DNA synthesis in vitro in the presence of IL-22.
Conclusions: We conclude that IL-22 may contribute to the regeneration of β-cells by up-regulating Regenerating Reg1 and Reg2 genes in the islets.
|