Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2013-05-01
|
Series: | Open Mathematics |
Subjects: | |
Online Access: | https://doi.org/10.2478/s11533-013-0214-z |
id |
doaj-4791036850f2413d84a27919756f73c4 |
---|---|
record_format |
Article |
spelling |
doaj-4791036850f2413d84a27919756f73c42021-09-06T19:22:53ZengDe GruyterOpen Mathematics2391-54552013-05-0111593193910.2478/s11533-013-0214-zExponential generating function of hyperharmonic numbers indexed by arithmetic progressionsMező István0Departamento de Matemática, Escuela Politécnica Nacional, Ladrón de Guevara, E11-253, Quito, Ecuadorhttps://doi.org/10.2478/s11533-013-0214-z05a15harmonic numbershyperharmonic numbershypergeometric functionstirling numbersr-stirling numbersbell numbersdobinski formulaexponential integraldigamma function |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mező István |
spellingShingle |
Mező István Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions Open Mathematics 05a15 harmonic numbers hyperharmonic numbers hypergeometric function stirling numbers r-stirling numbers bell numbers dobinski formula exponential integral digamma function |
author_facet |
Mező István |
author_sort |
Mező István |
title |
Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions |
title_short |
Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions |
title_full |
Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions |
title_fullStr |
Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions |
title_full_unstemmed |
Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions |
title_sort |
exponential generating function of hyperharmonic numbers indexed by arithmetic progressions |
publisher |
De Gruyter |
series |
Open Mathematics |
issn |
2391-5455 |
publishDate |
2013-05-01 |
topic |
05a15 harmonic numbers hyperharmonic numbers hypergeometric function stirling numbers r-stirling numbers bell numbers dobinski formula exponential integral digamma function |
url |
https://doi.org/10.2478/s11533-013-0214-z |
work_keys_str_mv |
AT mezoistvan exponentialgeneratingfunctionofhyperharmonicnumbersindexedbyarithmeticprogressions |
_version_ |
1717770885635506176 |