Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions

Bibliographic Details
Main Author: Mező István
Format: Article
Language:English
Published: De Gruyter 2013-05-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.2478/s11533-013-0214-z
id doaj-4791036850f2413d84a27919756f73c4
record_format Article
spelling doaj-4791036850f2413d84a27919756f73c42021-09-06T19:22:53ZengDe GruyterOpen Mathematics2391-54552013-05-0111593193910.2478/s11533-013-0214-zExponential generating function of hyperharmonic numbers indexed by arithmetic progressionsMező István0Departamento de Matemática, Escuela Politécnica Nacional, Ladrón de Guevara, E11-253, Quito, Ecuadorhttps://doi.org/10.2478/s11533-013-0214-z05a15harmonic numbershyperharmonic numbershypergeometric functionstirling numbersr-stirling numbersbell numbersdobinski formulaexponential integraldigamma function
collection DOAJ
language English
format Article
sources DOAJ
author Mező István
spellingShingle Mező István
Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions
Open Mathematics
05a15
harmonic numbers
hyperharmonic numbers
hypergeometric function
stirling numbers
r-stirling numbers
bell numbers
dobinski formula
exponential integral
digamma function
author_facet Mező István
author_sort Mező István
title Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions
title_short Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions
title_full Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions
title_fullStr Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions
title_full_unstemmed Exponential generating function of hyperharmonic numbers indexed by arithmetic progressions
title_sort exponential generating function of hyperharmonic numbers indexed by arithmetic progressions
publisher De Gruyter
series Open Mathematics
issn 2391-5455
publishDate 2013-05-01
topic 05a15
harmonic numbers
hyperharmonic numbers
hypergeometric function
stirling numbers
r-stirling numbers
bell numbers
dobinski formula
exponential integral
digamma function
url https://doi.org/10.2478/s11533-013-0214-z
work_keys_str_mv AT mezoistvan exponentialgeneratingfunctionofhyperharmonicnumbersindexedbyarithmeticprogressions
_version_ 1717770885635506176