Association between Ambient Air Pollution and Asthma Prevalence in Different Population Groups Residing in Eastern Texas, USA

Air pollution has been an on-going research focus due to its detrimental impact on human health. However, its specific effects on asthma prevalence in different age groups, genders and races are not well understood. Thus, the present study was designed to examine the association between selected air...

Full description

Bibliographic Details
Main Authors: Amit Kr. Gorai, Paul B. Tchounwou, Francis Tuluri
Format: Article
Language:English
Published: MDPI AG 2016-03-01
Series:International Journal of Environmental Research and Public Health
Subjects:
age
USA
Online Access:http://www.mdpi.com/1660-4601/13/4/378
Description
Summary:Air pollution has been an on-going research focus due to its detrimental impact on human health. However, its specific effects on asthma prevalence in different age groups, genders and races are not well understood. Thus, the present study was designed to examine the association between selected air pollutants and asthma prevalence in different population groups during 2010 in the eastern part of Texas, USA.The pollutants considered were particulate matter (PM2.5 with an aerodynamic diameter less than 2.5 micrometers) and surface ozone. The population groups were categorized based on age, gender, and race. County-wise asthma hospital discharge data for different age, gender, and racial groups were obtained from Texas Asthma Control Program, Office of Surveillance, Evaluation and Research, Texas Department of State Health Services. The annual means of the air pollutants were obtained from the United States Environmental Protection Agency (U.S. EPA)’s air quality system data mart program. Pearson correlation analyzes were conducted to examine the relationship between the annual mean concentrations of pollutants and asthma discharge rates (ADR) for different age groups, genders, and races. The results reveal that there is no significant association or relationship between ADR and exposure of air pollutants (PM2.5, and O3). The study results showed a positive correlation between PM2.5 and ADR and a negative correlation between ADR and ozone in most of the cases. These correlations were not statistically significant, and can be better explained by considering the local weather conditions. The research findings facilitate identification of hotspots for controlling the most affected populations from further environmental exposure to air pollution, and for preventing or reducing the health impacts.
ISSN:1660-4601