On the scalar $$\varvec{\pi K}$$ π K form factor beyond the elastic region
Abstract Pion–kaon ( $$\pi K$$ π K ) pairs occur frequently as final states in heavy-particle decays. A consistent treatment of $$\pi K$$ π K scattering and production amplitudes over a wide energy range is therefore mandatory for multiple applications: in Standard Model tests; to describe crossed c...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-05-01
|
Series: | European Physical Journal C: Particles and Fields |
Online Access: | https://doi.org/10.1140/epjc/s10052-021-09169-7 |
id |
doaj-4785d74bdc824f5b8ebe124c76767eef |
---|---|
record_format |
Article |
spelling |
doaj-4785d74bdc824f5b8ebe124c76767eef2021-05-16T11:31:53ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522021-05-0181511710.1140/epjc/s10052-021-09169-7On the scalar $$\varvec{\pi K}$$ π K form factor beyond the elastic regionL. von Detten0F. Noël1C. Hanhart2M. Hoferichter3B. Kubis4Forschungszentrum Jülich, Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron PhysicsForschungszentrum Jülich, Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron PhysicsForschungszentrum Jülich, Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron PhysicsAlbert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of BernHelmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität BonnAbstract Pion–kaon ( $$\pi K$$ π K ) pairs occur frequently as final states in heavy-particle decays. A consistent treatment of $$\pi K$$ π K scattering and production amplitudes over a wide energy range is therefore mandatory for multiple applications: in Standard Model tests; to describe crossed channels in the quest for exotic hadronic states; and for an improved spectroscopy of excited kaon resonances. In the elastic region, the phase shifts of $$\pi K$$ π K scattering in a given partial wave are related to the phases of the respective $$\pi K$$ π K form factors by Watson’s theorem. Going beyond that, we here construct a representation of the scalar $$\pi K$$ π K form factor that includes inelastic effects via resonance exchange, while fulfilling all constraints from $$\pi K$$ π K scattering and maintaining the correct analytic structure. As a first application, we consider the decay $${\tau \rightarrow K_S\pi \nu _\tau }$$ τ → K S π ν τ , in particular, we study to which extent the S-wave $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) and the P-wave $$K^*(1410)$$ K ∗ ( 1410 ) resonances can be differentiated and provide an improved estimate of the CP asymmetry produced by a tensor operator. Finally, we extract the pole parameters of the $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) and $$K_0^*(1950)$$ K 0 ∗ ( 1950 ) resonances via Padé approximants, $$\sqrt{s_{K_0^*(1430)}}=[1408(48)-i\, 180(48)]\,\text {MeV}$$ s K 0 ∗ ( 1430 ) = [ 1408 ( 48 ) - i 180 ( 48 ) ] MeV and $$\sqrt{s_{K_0^*(1950)}}=[1863(12)-i\,136(20)]\,\text {MeV}$$ s K 0 ∗ ( 1950 ) = [ 1863 ( 12 ) - i 136 ( 20 ) ] MeV , as well as the pole residues. A generalization of the method also allows us to formally define a branching fraction for $${\tau \rightarrow K_0^*(1430)\nu _\tau }$$ τ → K 0 ∗ ( 1430 ) ν τ in terms of the corresponding residue, leading to the upper limit $${\text {BR}(\tau \rightarrow K_0^*(1430)\nu _\tau )<1.6 \times 10^{-4}}$$ BR ( τ → K 0 ∗ ( 1430 ) ν τ ) < 1.6 × 10 - 4 .https://doi.org/10.1140/epjc/s10052-021-09169-7 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
L. von Detten F. Noël C. Hanhart M. Hoferichter B. Kubis |
spellingShingle |
L. von Detten F. Noël C. Hanhart M. Hoferichter B. Kubis On the scalar $$\varvec{\pi K}$$ π K form factor beyond the elastic region European Physical Journal C: Particles and Fields |
author_facet |
L. von Detten F. Noël C. Hanhart M. Hoferichter B. Kubis |
author_sort |
L. von Detten |
title |
On the scalar $$\varvec{\pi K}$$ π K form factor beyond the elastic region |
title_short |
On the scalar $$\varvec{\pi K}$$ π K form factor beyond the elastic region |
title_full |
On the scalar $$\varvec{\pi K}$$ π K form factor beyond the elastic region |
title_fullStr |
On the scalar $$\varvec{\pi K}$$ π K form factor beyond the elastic region |
title_full_unstemmed |
On the scalar $$\varvec{\pi K}$$ π K form factor beyond the elastic region |
title_sort |
on the scalar $$\varvec{\pi k}$$ π k form factor beyond the elastic region |
publisher |
SpringerOpen |
series |
European Physical Journal C: Particles and Fields |
issn |
1434-6044 1434-6052 |
publishDate |
2021-05-01 |
description |
Abstract Pion–kaon ( $$\pi K$$ π K ) pairs occur frequently as final states in heavy-particle decays. A consistent treatment of $$\pi K$$ π K scattering and production amplitudes over a wide energy range is therefore mandatory for multiple applications: in Standard Model tests; to describe crossed channels in the quest for exotic hadronic states; and for an improved spectroscopy of excited kaon resonances. In the elastic region, the phase shifts of $$\pi K$$ π K scattering in a given partial wave are related to the phases of the respective $$\pi K$$ π K form factors by Watson’s theorem. Going beyond that, we here construct a representation of the scalar $$\pi K$$ π K form factor that includes inelastic effects via resonance exchange, while fulfilling all constraints from $$\pi K$$ π K scattering and maintaining the correct analytic structure. As a first application, we consider the decay $${\tau \rightarrow K_S\pi \nu _\tau }$$ τ → K S π ν τ , in particular, we study to which extent the S-wave $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) and the P-wave $$K^*(1410)$$ K ∗ ( 1410 ) resonances can be differentiated and provide an improved estimate of the CP asymmetry produced by a tensor operator. Finally, we extract the pole parameters of the $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) and $$K_0^*(1950)$$ K 0 ∗ ( 1950 ) resonances via Padé approximants, $$\sqrt{s_{K_0^*(1430)}}=[1408(48)-i\, 180(48)]\,\text {MeV}$$ s K 0 ∗ ( 1430 ) = [ 1408 ( 48 ) - i 180 ( 48 ) ] MeV and $$\sqrt{s_{K_0^*(1950)}}=[1863(12)-i\,136(20)]\,\text {MeV}$$ s K 0 ∗ ( 1950 ) = [ 1863 ( 12 ) - i 136 ( 20 ) ] MeV , as well as the pole residues. A generalization of the method also allows us to formally define a branching fraction for $${\tau \rightarrow K_0^*(1430)\nu _\tau }$$ τ → K 0 ∗ ( 1430 ) ν τ in terms of the corresponding residue, leading to the upper limit $${\text {BR}(\tau \rightarrow K_0^*(1430)\nu _\tau )<1.6 \times 10^{-4}}$$ BR ( τ → K 0 ∗ ( 1430 ) ν τ ) < 1.6 × 10 - 4 . |
url |
https://doi.org/10.1140/epjc/s10052-021-09169-7 |
work_keys_str_mv |
AT lvondetten onthescalarvarvecpikpkformfactorbeyondtheelasticregion AT fnoel onthescalarvarvecpikpkformfactorbeyondtheelasticregion AT chanhart onthescalarvarvecpikpkformfactorbeyondtheelasticregion AT mhoferichter onthescalarvarvecpikpkformfactorbeyondtheelasticregion AT bkubis onthescalarvarvecpikpkformfactorbeyondtheelasticregion |
_version_ |
1721439346053087232 |