On the scalar $$\varvec{\pi K}$$ π K form factor beyond the elastic region

Abstract Pion–kaon ( $$\pi K$$ π K ) pairs occur frequently as final states in heavy-particle decays. A consistent treatment of $$\pi K$$ π K scattering and production amplitudes over a wide energy range is therefore mandatory for multiple applications: in Standard Model tests; to describe crossed c...

Full description

Bibliographic Details
Main Authors: L. von Detten, F. Noël, C. Hanhart, M. Hoferichter, B. Kubis
Format: Article
Language:English
Published: SpringerOpen 2021-05-01
Series:European Physical Journal C: Particles and Fields
Online Access:https://doi.org/10.1140/epjc/s10052-021-09169-7
id doaj-4785d74bdc824f5b8ebe124c76767eef
record_format Article
spelling doaj-4785d74bdc824f5b8ebe124c76767eef2021-05-16T11:31:53ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522021-05-0181511710.1140/epjc/s10052-021-09169-7On the scalar $$\varvec{\pi K}$$ π K form factor beyond the elastic regionL. von Detten0F. Noël1C. Hanhart2M. Hoferichter3B. Kubis4Forschungszentrum Jülich, Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron PhysicsForschungszentrum Jülich, Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron PhysicsForschungszentrum Jülich, Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron PhysicsAlbert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of BernHelmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität BonnAbstract Pion–kaon ( $$\pi K$$ π K ) pairs occur frequently as final states in heavy-particle decays. A consistent treatment of $$\pi K$$ π K scattering and production amplitudes over a wide energy range is therefore mandatory for multiple applications: in Standard Model tests; to describe crossed channels in the quest for exotic hadronic states; and for an improved spectroscopy of excited kaon resonances. In the elastic region, the phase shifts of $$\pi K$$ π K scattering in a given partial wave are related to the phases of the respective $$\pi K$$ π K form factors by Watson’s theorem. Going beyond that, we here construct a representation of the scalar $$\pi K$$ π K form factor that includes inelastic effects via resonance exchange, while fulfilling all constraints from $$\pi K$$ π K scattering and maintaining the correct analytic structure. As a first application, we consider the decay $${\tau \rightarrow K_S\pi \nu _\tau }$$ τ → K S π ν τ , in particular, we study to which extent the S-wave $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) and the P-wave $$K^*(1410)$$ K ∗ ( 1410 ) resonances can be differentiated and provide an improved estimate of the CP asymmetry produced by a tensor operator. Finally, we extract the pole parameters of the $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) and $$K_0^*(1950)$$ K 0 ∗ ( 1950 ) resonances via Padé approximants, $$\sqrt{s_{K_0^*(1430)}}=[1408(48)-i\, 180(48)]\,\text {MeV}$$ s K 0 ∗ ( 1430 ) = [ 1408 ( 48 ) - i 180 ( 48 ) ] MeV and $$\sqrt{s_{K_0^*(1950)}}=[1863(12)-i\,136(20)]\,\text {MeV}$$ s K 0 ∗ ( 1950 ) = [ 1863 ( 12 ) - i 136 ( 20 ) ] MeV , as well as the pole residues. A generalization of the method also allows us to formally define a branching fraction for $${\tau \rightarrow K_0^*(1430)\nu _\tau }$$ τ → K 0 ∗ ( 1430 ) ν τ in terms of the corresponding residue, leading to the upper limit $${\text {BR}(\tau \rightarrow K_0^*(1430)\nu _\tau )<1.6 \times 10^{-4}}$$ BR ( τ → K 0 ∗ ( 1430 ) ν τ ) < 1.6 × 10 - 4 .https://doi.org/10.1140/epjc/s10052-021-09169-7
collection DOAJ
language English
format Article
sources DOAJ
author L. von Detten
F. Noël
C. Hanhart
M. Hoferichter
B. Kubis
spellingShingle L. von Detten
F. Noël
C. Hanhart
M. Hoferichter
B. Kubis
On the scalar $$\varvec{\pi K}$$ π K form factor beyond the elastic region
European Physical Journal C: Particles and Fields
author_facet L. von Detten
F. Noël
C. Hanhart
M. Hoferichter
B. Kubis
author_sort L. von Detten
title On the scalar $$\varvec{\pi K}$$ π K form factor beyond the elastic region
title_short On the scalar $$\varvec{\pi K}$$ π K form factor beyond the elastic region
title_full On the scalar $$\varvec{\pi K}$$ π K form factor beyond the elastic region
title_fullStr On the scalar $$\varvec{\pi K}$$ π K form factor beyond the elastic region
title_full_unstemmed On the scalar $$\varvec{\pi K}$$ π K form factor beyond the elastic region
title_sort on the scalar $$\varvec{\pi k}$$ π k form factor beyond the elastic region
publisher SpringerOpen
series European Physical Journal C: Particles and Fields
issn 1434-6044
1434-6052
publishDate 2021-05-01
description Abstract Pion–kaon ( $$\pi K$$ π K ) pairs occur frequently as final states in heavy-particle decays. A consistent treatment of $$\pi K$$ π K scattering and production amplitudes over a wide energy range is therefore mandatory for multiple applications: in Standard Model tests; to describe crossed channels in the quest for exotic hadronic states; and for an improved spectroscopy of excited kaon resonances. In the elastic region, the phase shifts of $$\pi K$$ π K scattering in a given partial wave are related to the phases of the respective $$\pi K$$ π K form factors by Watson’s theorem. Going beyond that, we here construct a representation of the scalar $$\pi K$$ π K form factor that includes inelastic effects via resonance exchange, while fulfilling all constraints from $$\pi K$$ π K scattering and maintaining the correct analytic structure. As a first application, we consider the decay $${\tau \rightarrow K_S\pi \nu _\tau }$$ τ → K S π ν τ , in particular, we study to which extent the S-wave $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) and the P-wave $$K^*(1410)$$ K ∗ ( 1410 ) resonances can be differentiated and provide an improved estimate of the CP asymmetry produced by a tensor operator. Finally, we extract the pole parameters of the $$K_0^*(1430)$$ K 0 ∗ ( 1430 ) and $$K_0^*(1950)$$ K 0 ∗ ( 1950 ) resonances via Padé approximants, $$\sqrt{s_{K_0^*(1430)}}=[1408(48)-i\, 180(48)]\,\text {MeV}$$ s K 0 ∗ ( 1430 ) = [ 1408 ( 48 ) - i 180 ( 48 ) ] MeV and $$\sqrt{s_{K_0^*(1950)}}=[1863(12)-i\,136(20)]\,\text {MeV}$$ s K 0 ∗ ( 1950 ) = [ 1863 ( 12 ) - i 136 ( 20 ) ] MeV , as well as the pole residues. A generalization of the method also allows us to formally define a branching fraction for $${\tau \rightarrow K_0^*(1430)\nu _\tau }$$ τ → K 0 ∗ ( 1430 ) ν τ in terms of the corresponding residue, leading to the upper limit $${\text {BR}(\tau \rightarrow K_0^*(1430)\nu _\tau )<1.6 \times 10^{-4}}$$ BR ( τ → K 0 ∗ ( 1430 ) ν τ ) < 1.6 × 10 - 4 .
url https://doi.org/10.1140/epjc/s10052-021-09169-7
work_keys_str_mv AT lvondetten onthescalarvarvecpikpkformfactorbeyondtheelasticregion
AT fnoel onthescalarvarvecpikpkformfactorbeyondtheelasticregion
AT chanhart onthescalarvarvecpikpkformfactorbeyondtheelasticregion
AT mhoferichter onthescalarvarvecpikpkformfactorbeyondtheelasticregion
AT bkubis onthescalarvarvecpikpkformfactorbeyondtheelasticregion
_version_ 1721439346053087232