Studies on HDL associated enzymes under experimental hypercholesterolemia: possible modulation on selenium supplementation

<p>Abstract</p> <p>Background</p> <p>Atherosclerosis is a chronic disorder of the arterial wall that starts by formation of fatty streaks and gradually evolves into atherosclerotic plaques. High-density lipoproteins (HDL) blood levels are inversely correlated with ather...

Full description

Bibliographic Details
Main Authors: Bansal Mohinder P, Kaur Harman D
Format: Article
Language:English
Published: BMC 2009-12-01
Series:Lipids in Health and Disease
Online Access:http://www.lipidworld.com/content/8/1/55
Description
Summary:<p>Abstract</p> <p>Background</p> <p>Atherosclerosis is a chronic disorder of the arterial wall that starts by formation of fatty streaks and gradually evolves into atherosclerotic plaques. High-density lipoproteins (HDL) blood levels are inversely correlated with atherosclerosis. This beneficial effect of HDL has been partly attributed to its antioxidant properties mediated by paraoxonase1 (PON1) or platelet-activating factor acetylhydrolase (PAF-AH). The present study was aimed to study HDL associated enzymes i.e. PON1 and PAF-AH under experimental hypercholesterolemia and their possible modulation on selenium (Se; an antioxidant) supplementation. Male Sprague Dawley rats were divided into three groups and fed on the control diet, high fat diet (HFD) and HFD + Se respectively for the period of 4 months.</p> <p>Results</p> <p>Cholesterol, triglycerides, HDL and LDL levels were significantly increased by HFD feeding. Selenium supplementation lowered the triglyceride level, whereas the other lipid values remained unchanged. Serum selenium levels were reduced by 31% and ROS levels in the liver were 2-fold increased by HFD. Se supplementation, however, diminished the HFD-induced ROS levels by 29%. Furthermore, Se also improved the HFD-mediated reduction of serum PON1 enzyme activity by 34% and PON1 protein levels by 21%. However, no significant effect of Se was detected on the reduced PAF-AH proteins levels in HFD fed rats. mRNA expression of PON1 and PAF-AH in the liver was not affected in the Se treated groups.</p> <p>Conclusion</p> <p>Se supplementation appears to be protective in hypercholesterolemia by restoring the antioxidant properties of the HDL associated enzyme i.e. PON1 whereas biological system aims towards maintaining the same PAF-AH levels even on selenium supplementation indicating its probable role in both anti and pro-atherogenic activities. Therefore, Se supplementation might be a valuable approach to limit the adverse effects of hypercholesterolemia and may need further investigations.</p>
ISSN:1476-511X