Extreme edge-friendly indices of complete bipartite graphs

Let G=(V,E) be a simple graph. An edge labeling f:E to {0,1} induces a vertex labeling f^+:V to Z_2 defined by $f^+(v)equiv sumlimits_{uvin E} f(uv)pmod{2}$ for each $v in V$, where Z_2={0,1} is the additive group of order 2. For $iin{0,1}$, let e_f(i)=|f^{-1}(i)| and v_f(i)=|(f^+)^{-1}(i)|. A label...

Full description

Bibliographic Details
Main Author: Wai Chee Shiu
Format: Article
Language:English
Published: University of Isfahan 2016-09-01
Series:Transactions on Combinatorics
Subjects:
Online Access:http://www.combinatorics.ir/article_12473_5cd474dbde30ab0cf85638c76d56808a.pdf
id doaj-4767f664b40e499bb61d2c3dca4fd460
record_format Article
spelling doaj-4767f664b40e499bb61d2c3dca4fd4602020-11-24T20:49:56ZengUniversity of IsfahanTransactions on Combinatorics2251-86572251-86652016-09-0153112112473Extreme edge-friendly indices of complete bipartite graphsWai Chee Shiu0Hong Kong Baptist UniversityLet G=(V,E) be a simple graph. An edge labeling f:E to {0,1} induces a vertex labeling f^+:V to Z_2 defined by $f^+(v)equiv sumlimits_{uvin E} f(uv)pmod{2}$ for each $v in V$, where Z_2={0,1} is the additive group of order 2. For $iin{0,1}$, let e_f(i)=|f^{-1}(i)| and v_f(i)=|(f^+)^{-1}(i)|. A labeling f is called edge-friendly if $|e_f(1)-e_f(0)|le 1$. I_f(G)=v_f(1)-v_f(0) is called the edge-friendly index of G under an edge-friendly labeling f. Extreme values of edge-friendly index of complete bipartite graphs will be determined.http://www.combinatorics.ir/article_12473_5cd474dbde30ab0cf85638c76d56808a.pdfEdge-friendly indexedge-friendly labelingcomplete bipartite graph
collection DOAJ
language English
format Article
sources DOAJ
author Wai Chee Shiu
spellingShingle Wai Chee Shiu
Extreme edge-friendly indices of complete bipartite graphs
Transactions on Combinatorics
Edge-friendly index
edge-friendly labeling
complete bipartite graph
author_facet Wai Chee Shiu
author_sort Wai Chee Shiu
title Extreme edge-friendly indices of complete bipartite graphs
title_short Extreme edge-friendly indices of complete bipartite graphs
title_full Extreme edge-friendly indices of complete bipartite graphs
title_fullStr Extreme edge-friendly indices of complete bipartite graphs
title_full_unstemmed Extreme edge-friendly indices of complete bipartite graphs
title_sort extreme edge-friendly indices of complete bipartite graphs
publisher University of Isfahan
series Transactions on Combinatorics
issn 2251-8657
2251-8665
publishDate 2016-09-01
description Let G=(V,E) be a simple graph. An edge labeling f:E to {0,1} induces a vertex labeling f^+:V to Z_2 defined by $f^+(v)equiv sumlimits_{uvin E} f(uv)pmod{2}$ for each $v in V$, where Z_2={0,1} is the additive group of order 2. For $iin{0,1}$, let e_f(i)=|f^{-1}(i)| and v_f(i)=|(f^+)^{-1}(i)|. A labeling f is called edge-friendly if $|e_f(1)-e_f(0)|le 1$. I_f(G)=v_f(1)-v_f(0) is called the edge-friendly index of G under an edge-friendly labeling f. Extreme values of edge-friendly index of complete bipartite graphs will be determined.
topic Edge-friendly index
edge-friendly labeling
complete bipartite graph
url http://www.combinatorics.ir/article_12473_5cd474dbde30ab0cf85638c76d56808a.pdf
work_keys_str_mv AT waicheeshiu extremeedgefriendlyindicesofcompletebipartitegraphs
_version_ 1716805312612139008