Extreme edge-friendly indices of complete bipartite graphs
Let G=(V,E) be a simple graph. An edge labeling f:E to {0,1} induces a vertex labeling f^+:V to Z_2 defined by $f^+(v)equiv sumlimits_{uvin E} f(uv)pmod{2}$ for each $v in V$, where Z_2={0,1} is the additive group of order 2. For $iin{0,1}$, let e_f(i)=|f^{-1}(i)| and v_f(i)=|(f^+)^{-1}(i)|. A label...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Isfahan
2016-09-01
|
Series: | Transactions on Combinatorics |
Subjects: | |
Online Access: | http://www.combinatorics.ir/article_12473_5cd474dbde30ab0cf85638c76d56808a.pdf |
id |
doaj-4767f664b40e499bb61d2c3dca4fd460 |
---|---|
record_format |
Article |
spelling |
doaj-4767f664b40e499bb61d2c3dca4fd4602020-11-24T20:49:56ZengUniversity of IsfahanTransactions on Combinatorics2251-86572251-86652016-09-0153112112473Extreme edge-friendly indices of complete bipartite graphsWai Chee Shiu0Hong Kong Baptist UniversityLet G=(V,E) be a simple graph. An edge labeling f:E to {0,1} induces a vertex labeling f^+:V to Z_2 defined by $f^+(v)equiv sumlimits_{uvin E} f(uv)pmod{2}$ for each $v in V$, where Z_2={0,1} is the additive group of order 2. For $iin{0,1}$, let e_f(i)=|f^{-1}(i)| and v_f(i)=|(f^+)^{-1}(i)|. A labeling f is called edge-friendly if $|e_f(1)-e_f(0)|le 1$. I_f(G)=v_f(1)-v_f(0) is called the edge-friendly index of G under an edge-friendly labeling f. Extreme values of edge-friendly index of complete bipartite graphs will be determined.http://www.combinatorics.ir/article_12473_5cd474dbde30ab0cf85638c76d56808a.pdfEdge-friendly indexedge-friendly labelingcomplete bipartite graph |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Wai Chee Shiu |
spellingShingle |
Wai Chee Shiu Extreme edge-friendly indices of complete bipartite graphs Transactions on Combinatorics Edge-friendly index edge-friendly labeling complete bipartite graph |
author_facet |
Wai Chee Shiu |
author_sort |
Wai Chee Shiu |
title |
Extreme edge-friendly indices of complete bipartite graphs |
title_short |
Extreme edge-friendly indices of complete bipartite graphs |
title_full |
Extreme edge-friendly indices of complete bipartite graphs |
title_fullStr |
Extreme edge-friendly indices of complete bipartite graphs |
title_full_unstemmed |
Extreme edge-friendly indices of complete bipartite graphs |
title_sort |
extreme edge-friendly indices of complete bipartite graphs |
publisher |
University of Isfahan |
series |
Transactions on Combinatorics |
issn |
2251-8657 2251-8665 |
publishDate |
2016-09-01 |
description |
Let G=(V,E) be a simple graph. An edge labeling f:E to {0,1} induces a vertex labeling f^+:V to Z_2 defined by $f^+(v)equiv sumlimits_{uvin E} f(uv)pmod{2}$ for each $v in V$, where Z_2={0,1} is the additive group of order 2. For $iin{0,1}$, let e_f(i)=|f^{-1}(i)| and v_f(i)=|(f^+)^{-1}(i)|. A labeling f is called edge-friendly if $|e_f(1)-e_f(0)|le 1$. I_f(G)=v_f(1)-v_f(0) is called the edge-friendly index of G under an edge-friendly labeling f. Extreme values of edge-friendly index of complete bipartite graphs will be determined. |
topic |
Edge-friendly index edge-friendly labeling complete bipartite graph |
url |
http://www.combinatorics.ir/article_12473_5cd474dbde30ab0cf85638c76d56808a.pdf |
work_keys_str_mv |
AT waicheeshiu extremeedgefriendlyindicesofcompletebipartitegraphs |
_version_ |
1716805312612139008 |