Несекториальный оператор Штурма–Лиувилля с дискретным спектром
Впервые уравнения Штурма-Лиувилля с комплексным потенциалом изучал М.А. Наймарк. М.А. Наймарку удалось найти достаточные условия на комплексный потенциал, когда соответствующий оператор Штурма-Лиувилля на полуоси имеет дискретный спектр. В дальнейшем результат М.А.Наймарка был усилен в работах В.Б....
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Al-Farabi Kazakh National University
2020-12-01
|
Series: | Вестник КазНУ. Серия математика, механика, информатика |
Subjects: | |
Online Access: | https://bm.kaznu.kz/index.php/kaznu/article/view/816/585 |
Summary: | Впервые уравнения Штурма-Лиувилля с комплексным потенциалом изучал М.А. Наймарк. М.А. Наймарку удалось найти достаточные условия на комплексный потенциал, когда соответствующий оператор Штурма-Лиувилля на полуоси имеет дискретный спектр. В дальнейшем результат М.А.Наймарка был усилен в работах В.Б. Лидского. Условия на комплексный потенциал, приведенные В.Б. Лидским, гарантируют аккретивность исследуемых операторов Штурма-Лиувилля. Актуальным оставался вопрос о существовании неаккретивных операторов Штурма-Лиувилля с дискретным спектром. В предлагаемой статье дается ответ на указанный вопрос. Для уравнения Штурма–Лиувилля с комплексным потенциалом построено специальное решение, которое убывает на бесконечности и при каждом фиксированном значении независимой переменной является целой функцией спектрального параметра. Используя это решение, получено обобщение известной теоремы В.Б. Лидского об условиях на потенциал, при которых спектр соответствующего оператора Штурма-Лиувилля дискретен, а система корневых векторов полна и минимальна. В отличие от работы В.Б. Лидского, вместо ограниченности снизу вещественной части или полуограниченности мнимой части потенциала требуется лишь, чтобы область значений потенциала лежала вне некоторого угла произвольного раствора с биссектрисой по отрицательной вещественной полуоси. |
---|---|
ISSN: | 1563-0277 2617-4871 |