Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm
This paper presents a novel method for improving the training step of the single-scale Gabor filters by using the Boltzmann univariate marginal distribution algorithm (BUMDA) in X-ray angiograms. Since the single-scale Gabor filters (SSG) are governed by three parameters, the optimal selection of th...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2016-01-01
|
Series: | Computational Intelligence and Neuroscience |
Online Access: | http://dx.doi.org/10.1155/2016/2420962 |
id |
doaj-473a291bfaa447cc8d64c1362b80b39c |
---|---|
record_format |
Article |
spelling |
doaj-473a291bfaa447cc8d64c1362b80b39c2020-11-25T01:05:11ZengHindawi LimitedComputational Intelligence and Neuroscience1687-52651687-52732016-01-01201610.1155/2016/24209622420962Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution AlgorithmFernando Cervantes-Sanchez0Ivan Cruz-Aceves1Arturo Hernandez-Aguirre2Juan Gabriel Aviña-Cervantes3Sergio Solorio-Meza4Manuel Ornelas-Rodriguez5Miguel Torres-Cisneros6Centro de Investigación en Matemáticas (CIMAT), A.C., Jalisco S/N, Col. Valenciana, 36000 Guanajuato, GTO, MexicoCONACYT, Centro de Investigación en Matemáticas (CIMAT), A.C., Jalisco S/N, Col. Valenciana, 36000 Guanajuato, GTO, MexicoCentro de Investigación en Matemáticas (CIMAT), A.C., Jalisco S/N, Col. Valenciana, 36000 Guanajuato, GTO, MexicoDICIS, Universidad de Guanajuato, Comunidad de Palo Blanco s/n, 36885 Salamanca, GTO, MexicoUnidad de Investigación, UMAE 1 Bajío, IMSS, León, GTO, MexicoTecnológico Nacional de México-Instituto Tecnólogico de León, Av. Tecnológico s/n, Fracc. Ind. Julián de Obregón, 37290 León, GTO, MexicoDICIS, Universidad de Guanajuato, Comunidad de Palo Blanco s/n, 36885 Salamanca, GTO, MexicoThis paper presents a novel method for improving the training step of the single-scale Gabor filters by using the Boltzmann univariate marginal distribution algorithm (BUMDA) in X-ray angiograms. Since the single-scale Gabor filters (SSG) are governed by three parameters, the optimal selection of the SSG parameters is highly desirable in order to maximize the detection performance of coronary arteries while reducing the computational time. To obtain the best set of parameters for the SSG, the area (Az) under the receiver operating characteristic curve is used as fitness function. Moreover, to classify vessel and nonvessel pixels from the Gabor filter response, the interclass variance thresholding method has been adopted. The experimental results using the proposed method obtained the highest detection rate with Az=0.9502 over a training set of 40 images and Az=0.9583 with a test set of 40 images. In addition, the experimental results of vessel segmentation provided an accuracy of 0.944 with the test set of angiograms.http://dx.doi.org/10.1155/2016/2420962 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Fernando Cervantes-Sanchez Ivan Cruz-Aceves Arturo Hernandez-Aguirre Juan Gabriel Aviña-Cervantes Sergio Solorio-Meza Manuel Ornelas-Rodriguez Miguel Torres-Cisneros |
spellingShingle |
Fernando Cervantes-Sanchez Ivan Cruz-Aceves Arturo Hernandez-Aguirre Juan Gabriel Aviña-Cervantes Sergio Solorio-Meza Manuel Ornelas-Rodriguez Miguel Torres-Cisneros Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm Computational Intelligence and Neuroscience |
author_facet |
Fernando Cervantes-Sanchez Ivan Cruz-Aceves Arturo Hernandez-Aguirre Juan Gabriel Aviña-Cervantes Sergio Solorio-Meza Manuel Ornelas-Rodriguez Miguel Torres-Cisneros |
author_sort |
Fernando Cervantes-Sanchez |
title |
Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm |
title_short |
Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm |
title_full |
Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm |
title_fullStr |
Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm |
title_full_unstemmed |
Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm |
title_sort |
segmentation of coronary angiograms using gabor filters and boltzmann univariate marginal distribution algorithm |
publisher |
Hindawi Limited |
series |
Computational Intelligence and Neuroscience |
issn |
1687-5265 1687-5273 |
publishDate |
2016-01-01 |
description |
This paper presents a novel method for improving the training step of the single-scale Gabor filters by using the Boltzmann univariate marginal distribution algorithm (BUMDA) in X-ray angiograms. Since the single-scale Gabor filters (SSG) are governed by three parameters, the optimal selection of the SSG parameters is highly desirable in order to maximize the detection performance of coronary arteries while reducing the computational time. To obtain the best set of parameters for the SSG, the area (Az) under the receiver operating characteristic curve is used as fitness function. Moreover, to classify vessel and nonvessel pixels from the Gabor filter response, the interclass variance thresholding method has been adopted. The experimental results using the proposed method obtained the highest detection rate with Az=0.9502 over a training set of 40 images and Az=0.9583 with a test set of 40 images. In addition, the experimental results of vessel segmentation provided an accuracy of 0.944 with the test set of angiograms. |
url |
http://dx.doi.org/10.1155/2016/2420962 |
work_keys_str_mv |
AT fernandocervantessanchez segmentationofcoronaryangiogramsusinggaborfiltersandboltzmannunivariatemarginaldistributionalgorithm AT ivancruzaceves segmentationofcoronaryangiogramsusinggaborfiltersandboltzmannunivariatemarginaldistributionalgorithm AT arturohernandezaguirre segmentationofcoronaryangiogramsusinggaborfiltersandboltzmannunivariatemarginaldistributionalgorithm AT juangabrielavinacervantes segmentationofcoronaryangiogramsusinggaborfiltersandboltzmannunivariatemarginaldistributionalgorithm AT sergiosoloriomeza segmentationofcoronaryangiogramsusinggaborfiltersandboltzmannunivariatemarginaldistributionalgorithm AT manuelornelasrodriguez segmentationofcoronaryangiogramsusinggaborfiltersandboltzmannunivariatemarginaldistributionalgorithm AT migueltorrescisneros segmentationofcoronaryangiogramsusinggaborfiltersandboltzmannunivariatemarginaldistributionalgorithm |
_version_ |
1725195840807501824 |