Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm

This paper presents a novel method for improving the training step of the single-scale Gabor filters by using the Boltzmann univariate marginal distribution algorithm (BUMDA) in X-ray angiograms. Since the single-scale Gabor filters (SSG) are governed by three parameters, the optimal selection of th...

Full description

Bibliographic Details
Main Authors: Fernando Cervantes-Sanchez, Ivan Cruz-Aceves, Arturo Hernandez-Aguirre, Juan Gabriel Aviña-Cervantes, Sergio Solorio-Meza, Manuel Ornelas-Rodriguez, Miguel Torres-Cisneros
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:Computational Intelligence and Neuroscience
Online Access:http://dx.doi.org/10.1155/2016/2420962
id doaj-473a291bfaa447cc8d64c1362b80b39c
record_format Article
spelling doaj-473a291bfaa447cc8d64c1362b80b39c2020-11-25T01:05:11ZengHindawi LimitedComputational Intelligence and Neuroscience1687-52651687-52732016-01-01201610.1155/2016/24209622420962Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution AlgorithmFernando Cervantes-Sanchez0Ivan Cruz-Aceves1Arturo Hernandez-Aguirre2Juan Gabriel Aviña-Cervantes3Sergio Solorio-Meza4Manuel Ornelas-Rodriguez5Miguel Torres-Cisneros6Centro de Investigación en Matemáticas (CIMAT), A.C., Jalisco S/N, Col. Valenciana, 36000 Guanajuato, GTO, MexicoCONACYT, Centro de Investigación en Matemáticas (CIMAT), A.C., Jalisco S/N, Col. Valenciana, 36000 Guanajuato, GTO, MexicoCentro de Investigación en Matemáticas (CIMAT), A.C., Jalisco S/N, Col. Valenciana, 36000 Guanajuato, GTO, MexicoDICIS, Universidad de Guanajuato, Comunidad de Palo Blanco s/n, 36885 Salamanca, GTO, MexicoUnidad de Investigación, UMAE 1 Bajío, IMSS, León, GTO, MexicoTecnológico Nacional de México-Instituto Tecnólogico de León, Av. Tecnológico s/n, Fracc. Ind. Julián de Obregón, 37290 León, GTO, MexicoDICIS, Universidad de Guanajuato, Comunidad de Palo Blanco s/n, 36885 Salamanca, GTO, MexicoThis paper presents a novel method for improving the training step of the single-scale Gabor filters by using the Boltzmann univariate marginal distribution algorithm (BUMDA) in X-ray angiograms. Since the single-scale Gabor filters (SSG) are governed by three parameters, the optimal selection of the SSG parameters is highly desirable in order to maximize the detection performance of coronary arteries while reducing the computational time. To obtain the best set of parameters for the SSG, the area (Az) under the receiver operating characteristic curve is used as fitness function. Moreover, to classify vessel and nonvessel pixels from the Gabor filter response, the interclass variance thresholding method has been adopted. The experimental results using the proposed method obtained the highest detection rate with Az=0.9502 over a training set of 40 images and Az=0.9583 with a test set of 40 images. In addition, the experimental results of vessel segmentation provided an accuracy of 0.944 with the test set of angiograms.http://dx.doi.org/10.1155/2016/2420962
collection DOAJ
language English
format Article
sources DOAJ
author Fernando Cervantes-Sanchez
Ivan Cruz-Aceves
Arturo Hernandez-Aguirre
Juan Gabriel Aviña-Cervantes
Sergio Solorio-Meza
Manuel Ornelas-Rodriguez
Miguel Torres-Cisneros
spellingShingle Fernando Cervantes-Sanchez
Ivan Cruz-Aceves
Arturo Hernandez-Aguirre
Juan Gabriel Aviña-Cervantes
Sergio Solorio-Meza
Manuel Ornelas-Rodriguez
Miguel Torres-Cisneros
Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm
Computational Intelligence and Neuroscience
author_facet Fernando Cervantes-Sanchez
Ivan Cruz-Aceves
Arturo Hernandez-Aguirre
Juan Gabriel Aviña-Cervantes
Sergio Solorio-Meza
Manuel Ornelas-Rodriguez
Miguel Torres-Cisneros
author_sort Fernando Cervantes-Sanchez
title Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm
title_short Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm
title_full Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm
title_fullStr Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm
title_full_unstemmed Segmentation of Coronary Angiograms Using Gabor Filters and Boltzmann Univariate Marginal Distribution Algorithm
title_sort segmentation of coronary angiograms using gabor filters and boltzmann univariate marginal distribution algorithm
publisher Hindawi Limited
series Computational Intelligence and Neuroscience
issn 1687-5265
1687-5273
publishDate 2016-01-01
description This paper presents a novel method for improving the training step of the single-scale Gabor filters by using the Boltzmann univariate marginal distribution algorithm (BUMDA) in X-ray angiograms. Since the single-scale Gabor filters (SSG) are governed by three parameters, the optimal selection of the SSG parameters is highly desirable in order to maximize the detection performance of coronary arteries while reducing the computational time. To obtain the best set of parameters for the SSG, the area (Az) under the receiver operating characteristic curve is used as fitness function. Moreover, to classify vessel and nonvessel pixels from the Gabor filter response, the interclass variance thresholding method has been adopted. The experimental results using the proposed method obtained the highest detection rate with Az=0.9502 over a training set of 40 images and Az=0.9583 with a test set of 40 images. In addition, the experimental results of vessel segmentation provided an accuracy of 0.944 with the test set of angiograms.
url http://dx.doi.org/10.1155/2016/2420962
work_keys_str_mv AT fernandocervantessanchez segmentationofcoronaryangiogramsusinggaborfiltersandboltzmannunivariatemarginaldistributionalgorithm
AT ivancruzaceves segmentationofcoronaryangiogramsusinggaborfiltersandboltzmannunivariatemarginaldistributionalgorithm
AT arturohernandezaguirre segmentationofcoronaryangiogramsusinggaborfiltersandboltzmannunivariatemarginaldistributionalgorithm
AT juangabrielavinacervantes segmentationofcoronaryangiogramsusinggaborfiltersandboltzmannunivariatemarginaldistributionalgorithm
AT sergiosoloriomeza segmentationofcoronaryangiogramsusinggaborfiltersandboltzmannunivariatemarginaldistributionalgorithm
AT manuelornelasrodriguez segmentationofcoronaryangiogramsusinggaborfiltersandboltzmannunivariatemarginaldistributionalgorithm
AT migueltorrescisneros segmentationofcoronaryangiogramsusinggaborfiltersandboltzmannunivariatemarginaldistributionalgorithm
_version_ 1725195840807501824