Detecting Traffic Incidents Using Persistence Diagrams

We introduce a novel methodology for anomaly detection in time-series data. The method uses persistence diagrams and bottleneck distances to identify anomalies. Specifically, we generate multiple predictors by randomly bagging the data (reference bags), then for each data point replacing the data po...

Full description

Bibliographic Details
Main Authors: Eric S. Weber, Steven N. Harding, Lee Przybylski
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Algorithms
Subjects:
Online Access:https://www.mdpi.com/1999-4893/13/9/222
Description
Summary:We introduce a novel methodology for anomaly detection in time-series data. The method uses persistence diagrams and bottleneck distances to identify anomalies. Specifically, we generate multiple predictors by randomly bagging the data (reference bags), then for each data point replacing the data point for a randomly chosen point in each bag (modified bags). The predictors then are the set of bottleneck distances for the reference/modified bag pairs. We prove the stability of the predictors as the number of bags increases. We apply our methodology to traffic data and measure the performance for identifying known incidents.
ISSN:1999-4893