Existence of solutions for a class of Kirchhoff-type equations with indefinite potential
Abstract In this paper, we consider the existence of solutions of the following Kirchhoff-type problem: { − ( a + b ∫ R 3 | ∇ u | 2 d x ) Δ u + V ( x ) u = f ( x , u ) , in R 3 , u ∈ H 1 ( R 3 ) , $$\begin{aligned} \textstyle\begin{cases} - (a+b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}\,dx )...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-08-01
|
Series: | Boundary Value Problems |
Subjects: | |
Online Access: | https://doi.org/10.1186/s13661-021-01550-5 |
id |
doaj-472af40d33ce4c1d8fc74f4e2e90cdc8 |
---|---|
record_format |
Article |
spelling |
doaj-472af40d33ce4c1d8fc74f4e2e90cdc82021-08-29T11:13:11ZengSpringerOpenBoundary Value Problems1687-27702021-08-012021111310.1186/s13661-021-01550-5Existence of solutions for a class of Kirchhoff-type equations with indefinite potentialJian Zhou0Yunshun Wu1School of Mathematical Sciences, Guizhou Nromal UniversitySchool of Mathematical Sciences, Guizhou Nromal UniversityAbstract In this paper, we consider the existence of solutions of the following Kirchhoff-type problem: { − ( a + b ∫ R 3 | ∇ u | 2 d x ) Δ u + V ( x ) u = f ( x , u ) , in R 3 , u ∈ H 1 ( R 3 ) , $$\begin{aligned} \textstyle\begin{cases} - (a+b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}\,dx )\Delta u+ V(x)u=f(x,u) , & \text{in }\mathbb{R}^{3}, \\ u\in H^{1}(\mathbb{R}^{3}),\end{cases}\displaystyle \end{aligned}$$ where a , b > 0 $a,b>0$ are constants, and the potential V ( x ) $V(x)$ is indefinite in sign. Under some suitable assumptions on f, the existence of solutions is obtained by Morse theory.https://doi.org/10.1186/s13661-021-01550-5Kirchhoff-type equationVariational methodsPalais–Smale conditionLocal linkingMorse theory |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jian Zhou Yunshun Wu |
spellingShingle |
Jian Zhou Yunshun Wu Existence of solutions for a class of Kirchhoff-type equations with indefinite potential Boundary Value Problems Kirchhoff-type equation Variational methods Palais–Smale condition Local linking Morse theory |
author_facet |
Jian Zhou Yunshun Wu |
author_sort |
Jian Zhou |
title |
Existence of solutions for a class of Kirchhoff-type equations with indefinite potential |
title_short |
Existence of solutions for a class of Kirchhoff-type equations with indefinite potential |
title_full |
Existence of solutions for a class of Kirchhoff-type equations with indefinite potential |
title_fullStr |
Existence of solutions for a class of Kirchhoff-type equations with indefinite potential |
title_full_unstemmed |
Existence of solutions for a class of Kirchhoff-type equations with indefinite potential |
title_sort |
existence of solutions for a class of kirchhoff-type equations with indefinite potential |
publisher |
SpringerOpen |
series |
Boundary Value Problems |
issn |
1687-2770 |
publishDate |
2021-08-01 |
description |
Abstract In this paper, we consider the existence of solutions of the following Kirchhoff-type problem: { − ( a + b ∫ R 3 | ∇ u | 2 d x ) Δ u + V ( x ) u = f ( x , u ) , in R 3 , u ∈ H 1 ( R 3 ) , $$\begin{aligned} \textstyle\begin{cases} - (a+b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}\,dx )\Delta u+ V(x)u=f(x,u) , & \text{in }\mathbb{R}^{3}, \\ u\in H^{1}(\mathbb{R}^{3}),\end{cases}\displaystyle \end{aligned}$$ where a , b > 0 $a,b>0$ are constants, and the potential V ( x ) $V(x)$ is indefinite in sign. Under some suitable assumptions on f, the existence of solutions is obtained by Morse theory. |
topic |
Kirchhoff-type equation Variational methods Palais–Smale condition Local linking Morse theory |
url |
https://doi.org/10.1186/s13661-021-01550-5 |
work_keys_str_mv |
AT jianzhou existenceofsolutionsforaclassofkirchhofftypeequationswithindefinitepotential AT yunshunwu existenceofsolutionsforaclassofkirchhofftypeequationswithindefinitepotential |
_version_ |
1721187027706183680 |