Existence of solutions for a class of Kirchhoff-type equations with indefinite potential

Abstract In this paper, we consider the existence of solutions of the following Kirchhoff-type problem: { − ( a + b ∫ R 3 | ∇ u | 2 d x ) Δ u + V ( x ) u = f ( x , u ) , in  R 3 , u ∈ H 1 ( R 3 ) , $$\begin{aligned} \textstyle\begin{cases} - (a+b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}\,dx )...

Full description

Bibliographic Details
Main Authors: Jian Zhou, Yunshun Wu
Format: Article
Language:English
Published: SpringerOpen 2021-08-01
Series:Boundary Value Problems
Subjects:
Online Access:https://doi.org/10.1186/s13661-021-01550-5
id doaj-472af40d33ce4c1d8fc74f4e2e90cdc8
record_format Article
spelling doaj-472af40d33ce4c1d8fc74f4e2e90cdc82021-08-29T11:13:11ZengSpringerOpenBoundary Value Problems1687-27702021-08-012021111310.1186/s13661-021-01550-5Existence of solutions for a class of Kirchhoff-type equations with indefinite potentialJian Zhou0Yunshun Wu1School of Mathematical Sciences, Guizhou Nromal UniversitySchool of Mathematical Sciences, Guizhou Nromal UniversityAbstract In this paper, we consider the existence of solutions of the following Kirchhoff-type problem: { − ( a + b ∫ R 3 | ∇ u | 2 d x ) Δ u + V ( x ) u = f ( x , u ) , in  R 3 , u ∈ H 1 ( R 3 ) , $$\begin{aligned} \textstyle\begin{cases} - (a+b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}\,dx )\Delta u+ V(x)u=f(x,u) , & \text{in }\mathbb{R}^{3}, \\ u\in H^{1}(\mathbb{R}^{3}),\end{cases}\displaystyle \end{aligned}$$ where a , b > 0 $a,b>0$ are constants, and the potential V ( x ) $V(x)$ is indefinite in sign. Under some suitable assumptions on f, the existence of solutions is obtained by Morse theory.https://doi.org/10.1186/s13661-021-01550-5Kirchhoff-type equationVariational methodsPalais–Smale conditionLocal linkingMorse theory
collection DOAJ
language English
format Article
sources DOAJ
author Jian Zhou
Yunshun Wu
spellingShingle Jian Zhou
Yunshun Wu
Existence of solutions for a class of Kirchhoff-type equations with indefinite potential
Boundary Value Problems
Kirchhoff-type equation
Variational methods
Palais–Smale condition
Local linking
Morse theory
author_facet Jian Zhou
Yunshun Wu
author_sort Jian Zhou
title Existence of solutions for a class of Kirchhoff-type equations with indefinite potential
title_short Existence of solutions for a class of Kirchhoff-type equations with indefinite potential
title_full Existence of solutions for a class of Kirchhoff-type equations with indefinite potential
title_fullStr Existence of solutions for a class of Kirchhoff-type equations with indefinite potential
title_full_unstemmed Existence of solutions for a class of Kirchhoff-type equations with indefinite potential
title_sort existence of solutions for a class of kirchhoff-type equations with indefinite potential
publisher SpringerOpen
series Boundary Value Problems
issn 1687-2770
publishDate 2021-08-01
description Abstract In this paper, we consider the existence of solutions of the following Kirchhoff-type problem: { − ( a + b ∫ R 3 | ∇ u | 2 d x ) Δ u + V ( x ) u = f ( x , u ) , in  R 3 , u ∈ H 1 ( R 3 ) , $$\begin{aligned} \textstyle\begin{cases} - (a+b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}\,dx )\Delta u+ V(x)u=f(x,u) , & \text{in }\mathbb{R}^{3}, \\ u\in H^{1}(\mathbb{R}^{3}),\end{cases}\displaystyle \end{aligned}$$ where a , b > 0 $a,b>0$ are constants, and the potential V ( x ) $V(x)$ is indefinite in sign. Under some suitable assumptions on f, the existence of solutions is obtained by Morse theory.
topic Kirchhoff-type equation
Variational methods
Palais–Smale condition
Local linking
Morse theory
url https://doi.org/10.1186/s13661-021-01550-5
work_keys_str_mv AT jianzhou existenceofsolutionsforaclassofkirchhofftypeequationswithindefinitepotential
AT yunshunwu existenceofsolutionsforaclassofkirchhofftypeequationswithindefinitepotential
_version_ 1721187027706183680