User-Configurable Timing and Navigation for UAVs
As the use of unmanned aerial vehicles (UAVs) for industrial use increases, so are the demands for highly accurate navigation solutions, and with the high dynamics that UAVs offer, the accuracy of a measurement does not only depend on the value of the measurement, but also the accuracy of the associ...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-07-01
|
Series: | Sensors |
Subjects: | |
Online Access: | http://www.mdpi.com/1424-8220/18/8/2468 |
id |
doaj-471378edabd643b0b149440c2f06479d |
---|---|
record_format |
Article |
spelling |
doaj-471378edabd643b0b149440c2f06479d2020-11-24T22:49:52ZengMDPI AGSensors1424-82202018-07-01188246810.3390/s18082468s18082468User-Configurable Timing and Navigation for UAVsSigurd M. Albrektsen0Tor Arne Johansen1Department of Engineering Cybernetics, Centre for Autonomous Marine Operations and Systems, Norwegian University of Science and Technology (NTNU-AMOS), O.S. Bragstads plass 2D, 7034 Trondheim, NorwayDepartment of Engineering Cybernetics, Centre for Autonomous Marine Operations and Systems, Norwegian University of Science and Technology (NTNU-AMOS), O.S. Bragstads plass 2D, 7034 Trondheim, NorwayAs the use of unmanned aerial vehicles (UAVs) for industrial use increases, so are the demands for highly accurate navigation solutions, and with the high dynamics that UAVs offer, the accuracy of a measurement does not only depend on the value of the measurement, but also the accuracy of the associated timestamp. Sensor timing using dedicated hardware is the de-facto method to achieve optimal sensor performance, but the solutions available today have limited flexibility and requires much effort when changing sensors. This article presents requirements and suggestions for a highly accurate, reconfigurable sensor timing system that simplifies integration of sensor systems and navigation systems for UAVs. Both typical avionics sensors, like GNSS receivers and IMUs, and more complex sensors, such as cameras, are supported. To verify the design, an implementation named the SenTiBoard was created, along with a software support package and a baseline sensor-suite. With the solution presented in this paper we get a measurement resolution of 10 nanoseconds and we can transfer up to 7.6 megabytes per second. If the sensor suite includes a GNSS receiver with a pulse-per-second (PPS) reference, the sensor measurements can be related to an absolute time reference (UTC) with a clock drift of 1.9 microseconds per second RMS. An experiment was carried out, using a Mini Cruiser fixed-wing UAV, where errors in georeferencing infrared images were reduced with a factor of 4 when compared to a software synchronization method.http://www.mdpi.com/1424-8220/18/8/2468reconfigurable sensor systemsrobot navigationsensor synchronizationdrones |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sigurd M. Albrektsen Tor Arne Johansen |
spellingShingle |
Sigurd M. Albrektsen Tor Arne Johansen User-Configurable Timing and Navigation for UAVs Sensors reconfigurable sensor systems robot navigation sensor synchronization drones |
author_facet |
Sigurd M. Albrektsen Tor Arne Johansen |
author_sort |
Sigurd M. Albrektsen |
title |
User-Configurable Timing and Navigation for UAVs |
title_short |
User-Configurable Timing and Navigation for UAVs |
title_full |
User-Configurable Timing and Navigation for UAVs |
title_fullStr |
User-Configurable Timing and Navigation for UAVs |
title_full_unstemmed |
User-Configurable Timing and Navigation for UAVs |
title_sort |
user-configurable timing and navigation for uavs |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2018-07-01 |
description |
As the use of unmanned aerial vehicles (UAVs) for industrial use increases, so are the demands for highly accurate navigation solutions, and with the high dynamics that UAVs offer, the accuracy of a measurement does not only depend on the value of the measurement, but also the accuracy of the associated timestamp. Sensor timing using dedicated hardware is the de-facto method to achieve optimal sensor performance, but the solutions available today have limited flexibility and requires much effort when changing sensors. This article presents requirements and suggestions for a highly accurate, reconfigurable sensor timing system that simplifies integration of sensor systems and navigation systems for UAVs. Both typical avionics sensors, like GNSS receivers and IMUs, and more complex sensors, such as cameras, are supported. To verify the design, an implementation named the SenTiBoard was created, along with a software support package and a baseline sensor-suite. With the solution presented in this paper we get a measurement resolution of 10 nanoseconds and we can transfer up to 7.6 megabytes per second. If the sensor suite includes a GNSS receiver with a pulse-per-second (PPS) reference, the sensor measurements can be related to an absolute time reference (UTC) with a clock drift of 1.9 microseconds per second RMS. An experiment was carried out, using a Mini Cruiser fixed-wing UAV, where errors in georeferencing infrared images were reduced with a factor of 4 when compared to a software synchronization method. |
topic |
reconfigurable sensor systems robot navigation sensor synchronization drones |
url |
http://www.mdpi.com/1424-8220/18/8/2468 |
work_keys_str_mv |
AT sigurdmalbrektsen userconfigurabletimingandnavigationforuavs AT torarnejohansen userconfigurabletimingandnavigationforuavs |
_version_ |
1725674740591362048 |