Tubular immunostimulating complex based on cucumarioside A<sub>2</sub>-2 and monogalactosyldiacylglycerol from marine macrophytes

<p>Abstract</p> <p>Background</p> <p>There is an urgent need to develop safe and effective adjuvants for the new generation of subunit vaccines. We developed the tubular immunostimulating complex (TI-complex) as a new nanoparticulate antigen delivery system. The morphol...

Full description

Bibliographic Details
Main Authors: Vorobyeva Natalia S, Tsybulsky Alexander V, Mazeika Andrey N, Sanina Nina M, Kostetsky Eduard Y, Shnyrov Valery L
Format: Article
Language:English
Published: BMC 2011-09-01
Series:Journal of Nanobiotechnology
Online Access:http://www.jnanobiotechnology.com/content/9/1/35
id doaj-470c87e9f6a94f1387cb426f8aaba5c0
record_format Article
spelling doaj-470c87e9f6a94f1387cb426f8aaba5c02020-11-24T22:05:00ZengBMCJournal of Nanobiotechnology1477-31552011-09-01913510.1186/1477-3155-9-35Tubular immunostimulating complex based on cucumarioside A<sub>2</sub>-2 and monogalactosyldiacylglycerol from marine macrophytesVorobyeva Natalia STsybulsky Alexander VMazeika Andrey NSanina Nina MKostetsky Eduard YShnyrov Valery L<p>Abstract</p> <p>Background</p> <p>There is an urgent need to develop safe and effective adjuvants for the new generation of subunit vaccines. We developed the tubular immunostimulating complex (TI-complex) as a new nanoparticulate antigen delivery system. The morphology and composition of TI-complexes principally differ from the known vesicular immunostimulating complexes (ISCOMs). However, methodology for the preparation of TI-complexes has suffered a number of shortcomings. The aim of the present work was to obtain an antigen carrier consisting of triterpene glycosides from <it>Cucumaria japonica</it>, cholesterol, and monogalactosyldiacylglycerol from marine macrophytes with reproducible properties and high adjuvant activity.</p> <p>Results</p> <p>The cucumarioside A<sub>2</sub>-2 - cholesterol - MGalDG ratio of 6:2:4 (by weight) was found to provide the most effective formation of TI-complexes and the minimum hemolytic activity <it>in vitro</it>. Tubules of TI-complexes have an outer diameter of about 16 nm, an inner diameter of 6 nm, and a length of 500 nm. A significant dilution by the buffer gradually destroyed the tubular nanoparticles. The TI-complex was able to increase the immunogenicity of the protein antigens from <it>Yersinia pseudotuberculosis </it>by three to four times.</p> <p>Conclusions</p> <p>We propose an optimized methodology for the preparation of homogeneous TI-complexes containing only tubular particles, which would achieve reproducible immunization results. We suggest that the elaborated TI-complexes apply as a universal delivery system for different subunit antigens within anti-infectious vaccines and enhance their economic efficacy and safety.</p> http://www.jnanobiotechnology.com/content/9/1/35
collection DOAJ
language English
format Article
sources DOAJ
author Vorobyeva Natalia S
Tsybulsky Alexander V
Mazeika Andrey N
Sanina Nina M
Kostetsky Eduard Y
Shnyrov Valery L
spellingShingle Vorobyeva Natalia S
Tsybulsky Alexander V
Mazeika Andrey N
Sanina Nina M
Kostetsky Eduard Y
Shnyrov Valery L
Tubular immunostimulating complex based on cucumarioside A<sub>2</sub>-2 and monogalactosyldiacylglycerol from marine macrophytes
Journal of Nanobiotechnology
author_facet Vorobyeva Natalia S
Tsybulsky Alexander V
Mazeika Andrey N
Sanina Nina M
Kostetsky Eduard Y
Shnyrov Valery L
author_sort Vorobyeva Natalia S
title Tubular immunostimulating complex based on cucumarioside A<sub>2</sub>-2 and monogalactosyldiacylglycerol from marine macrophytes
title_short Tubular immunostimulating complex based on cucumarioside A<sub>2</sub>-2 and monogalactosyldiacylglycerol from marine macrophytes
title_full Tubular immunostimulating complex based on cucumarioside A<sub>2</sub>-2 and monogalactosyldiacylglycerol from marine macrophytes
title_fullStr Tubular immunostimulating complex based on cucumarioside A<sub>2</sub>-2 and monogalactosyldiacylglycerol from marine macrophytes
title_full_unstemmed Tubular immunostimulating complex based on cucumarioside A<sub>2</sub>-2 and monogalactosyldiacylglycerol from marine macrophytes
title_sort tubular immunostimulating complex based on cucumarioside a<sub>2</sub>-2 and monogalactosyldiacylglycerol from marine macrophytes
publisher BMC
series Journal of Nanobiotechnology
issn 1477-3155
publishDate 2011-09-01
description <p>Abstract</p> <p>Background</p> <p>There is an urgent need to develop safe and effective adjuvants for the new generation of subunit vaccines. We developed the tubular immunostimulating complex (TI-complex) as a new nanoparticulate antigen delivery system. The morphology and composition of TI-complexes principally differ from the known vesicular immunostimulating complexes (ISCOMs). However, methodology for the preparation of TI-complexes has suffered a number of shortcomings. The aim of the present work was to obtain an antigen carrier consisting of triterpene glycosides from <it>Cucumaria japonica</it>, cholesterol, and monogalactosyldiacylglycerol from marine macrophytes with reproducible properties and high adjuvant activity.</p> <p>Results</p> <p>The cucumarioside A<sub>2</sub>-2 - cholesterol - MGalDG ratio of 6:2:4 (by weight) was found to provide the most effective formation of TI-complexes and the minimum hemolytic activity <it>in vitro</it>. Tubules of TI-complexes have an outer diameter of about 16 nm, an inner diameter of 6 nm, and a length of 500 nm. A significant dilution by the buffer gradually destroyed the tubular nanoparticles. The TI-complex was able to increase the immunogenicity of the protein antigens from <it>Yersinia pseudotuberculosis </it>by three to four times.</p> <p>Conclusions</p> <p>We propose an optimized methodology for the preparation of homogeneous TI-complexes containing only tubular particles, which would achieve reproducible immunization results. We suggest that the elaborated TI-complexes apply as a universal delivery system for different subunit antigens within anti-infectious vaccines and enhance their economic efficacy and safety.</p>
url http://www.jnanobiotechnology.com/content/9/1/35
work_keys_str_mv AT vorobyevanatalias tubularimmunostimulatingcomplexbasedoncucumariosideasub2sub2andmonogalactosyldiacylglycerolfrommarinemacrophytes
AT tsybulskyalexanderv tubularimmunostimulatingcomplexbasedoncucumariosideasub2sub2andmonogalactosyldiacylglycerolfrommarinemacrophytes
AT mazeikaandreyn tubularimmunostimulatingcomplexbasedoncucumariosideasub2sub2andmonogalactosyldiacylglycerolfrommarinemacrophytes
AT saninaninam tubularimmunostimulatingcomplexbasedoncucumariosideasub2sub2andmonogalactosyldiacylglycerolfrommarinemacrophytes
AT kostetskyeduardy tubularimmunostimulatingcomplexbasedoncucumariosideasub2sub2andmonogalactosyldiacylglycerolfrommarinemacrophytes
AT shnyrovvaleryl tubularimmunostimulatingcomplexbasedoncucumariosideasub2sub2andmonogalactosyldiacylglycerolfrommarinemacrophytes
_version_ 1725827750837616640