Decoding topologically associating domains with ultra-low resolution Hi-C data by graph structural entropy

Accurate detection of TADs requires ultra-deep sequencing and sophisticated normalisation procedures, which limits the analysis of Hi-C data. Here the authors develop a normalisation-free method to decode the domains of chromosomes (deDoc) that utilizes structural entropy to predict TADs with ultra-...

Full description

Bibliographic Details
Main Authors: Angsheng Li, Xianchen Yin, Bingxiang Xu, Danyang Wang, Jimin Han, Yi Wei, Yun Deng, Ying Xiong, Zhihua Zhang
Format: Article
Language:English
Published: Nature Publishing Group 2018-08-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-018-05691-7
id doaj-46fdb2762a7445d7993295e078768865
record_format Article
spelling doaj-46fdb2762a7445d7993295e0787688652021-05-11T09:41:49ZengNature Publishing GroupNature Communications2041-17232018-08-019111210.1038/s41467-018-05691-7Decoding topologically associating domains with ultra-low resolution Hi-C data by graph structural entropyAngsheng Li0Xianchen Yin1Bingxiang Xu2Danyang Wang3Jimin Han4Yi Wei5Yun Deng6Ying Xiong7Zhihua Zhang8State Key Laboratory of Software Development Environment, School of Computer Science, Beihang UniversityState Key Laboratory of Computer Science, Institute of Software, Chinese Academy of SciencesCAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesCAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesSchool of Computer Science, University of Chinese Academy of SciencesSchool of Mathematics, University of Chinese Academy of SciencesSchool of Life Science, University of Chinese Academy of SciencesSchool of Physics, University of Chinese Academy of SciencesCAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of SciencesAccurate detection of TADs requires ultra-deep sequencing and sophisticated normalisation procedures, which limits the analysis of Hi-C data. Here the authors develop a normalisation-free method to decode the domains of chromosomes (deDoc) that utilizes structural entropy to predict TADs with ultra-low sequencing data.https://doi.org/10.1038/s41467-018-05691-7
collection DOAJ
language English
format Article
sources DOAJ
author Angsheng Li
Xianchen Yin
Bingxiang Xu
Danyang Wang
Jimin Han
Yi Wei
Yun Deng
Ying Xiong
Zhihua Zhang
spellingShingle Angsheng Li
Xianchen Yin
Bingxiang Xu
Danyang Wang
Jimin Han
Yi Wei
Yun Deng
Ying Xiong
Zhihua Zhang
Decoding topologically associating domains with ultra-low resolution Hi-C data by graph structural entropy
Nature Communications
author_facet Angsheng Li
Xianchen Yin
Bingxiang Xu
Danyang Wang
Jimin Han
Yi Wei
Yun Deng
Ying Xiong
Zhihua Zhang
author_sort Angsheng Li
title Decoding topologically associating domains with ultra-low resolution Hi-C data by graph structural entropy
title_short Decoding topologically associating domains with ultra-low resolution Hi-C data by graph structural entropy
title_full Decoding topologically associating domains with ultra-low resolution Hi-C data by graph structural entropy
title_fullStr Decoding topologically associating domains with ultra-low resolution Hi-C data by graph structural entropy
title_full_unstemmed Decoding topologically associating domains with ultra-low resolution Hi-C data by graph structural entropy
title_sort decoding topologically associating domains with ultra-low resolution hi-c data by graph structural entropy
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2018-08-01
description Accurate detection of TADs requires ultra-deep sequencing and sophisticated normalisation procedures, which limits the analysis of Hi-C data. Here the authors develop a normalisation-free method to decode the domains of chromosomes (deDoc) that utilizes structural entropy to predict TADs with ultra-low sequencing data.
url https://doi.org/10.1038/s41467-018-05691-7
work_keys_str_mv AT angshengli decodingtopologicallyassociatingdomainswithultralowresolutionhicdatabygraphstructuralentropy
AT xianchenyin decodingtopologicallyassociatingdomainswithultralowresolutionhicdatabygraphstructuralentropy
AT bingxiangxu decodingtopologicallyassociatingdomainswithultralowresolutionhicdatabygraphstructuralentropy
AT danyangwang decodingtopologicallyassociatingdomainswithultralowresolutionhicdatabygraphstructuralentropy
AT jiminhan decodingtopologicallyassociatingdomainswithultralowresolutionhicdatabygraphstructuralentropy
AT yiwei decodingtopologicallyassociatingdomainswithultralowresolutionhicdatabygraphstructuralentropy
AT yundeng decodingtopologicallyassociatingdomainswithultralowresolutionhicdatabygraphstructuralentropy
AT yingxiong decodingtopologicallyassociatingdomainswithultralowresolutionhicdatabygraphstructuralentropy
AT zhihuazhang decodingtopologicallyassociatingdomainswithultralowresolutionhicdatabygraphstructuralentropy
_version_ 1721449396795604992