A note about the deterministic property of characteristic functions
We study an extension property for characteristic functions f : Rn → C of probability measures. More precisely, let f be the characteristic function of a probability density φ on Rn, and let Uσ = {x ∈ Rn: mink|xk| > σ}, σ > 0, be a neighborhood of infinity. We say that f has the σ-determinist...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Vilnius University Press
2018-12-01
|
Series: | Nonlinear Analysis |
Subjects: | |
Online Access: | http://www.zurnalai.vu.lt/nonlinear-analysis/article/view/12925 |
Summary: | We study an extension property for characteristic functions f : Rn → C of probability measures. More precisely, let f be the characteristic function of a probability density φ on Rn, and let Uσ = {x ∈ Rn: mink|xk| > σ}, σ > 0, be a neighborhood of infinity. We say that f has the σ-deterministic property if for any other characteristic function g such that f = g on Uσ, it follows that f ≡ g. A sufficient condition on f to has the σ-deterministic property is given. We also discuss the question about how precise our sufficient condition is? These results show that the σ-deterministic property of f depends on an arithmetic structure of the support of φ.
|
---|---|
ISSN: | 1392-5113 2335-8963 |