Regulatory role and mechanism of m6A RNA modification in human metabolic diseases

Metabolic diseases caused by disorders in amino acids, glucose, lipid metabolism, and other metabolic risk factors show high incidences in young people, and current treatments are ineffective. N6-methyladenosine (m6A) RNA modification is a post-transcriptional regulation of gene expression with seve...

Full description

Bibliographic Details
Main Authors: Yuliang Zhang, Wenjie Chen, Xiwang Zheng, Yujia Guo, Jimin Cao, Yu Zhang, Shuxin Wen, Wei Gao, Yongyan Wu
Format: Article
Language:English
Published: Elsevier 2021-09-01
Series:Molecular Therapy: Oncolytics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2372770521000693
Description
Summary:Metabolic diseases caused by disorders in amino acids, glucose, lipid metabolism, and other metabolic risk factors show high incidences in young people, and current treatments are ineffective. N6-methyladenosine (m6A) RNA modification is a post-transcriptional regulation of gene expression with several effects on physiological processes and biological functions. Recent studies report that m6A RNA modification is involved in various metabolic pathways and development of common metabolic diseases, making it a potential disease-specific therapeutic target. This review explores components, mechanisms, and research methods of m6A RNA modification. In addition, we summarize the progress of research on m6A RNA modification in metabolism-related human diseases, including diabetes, obesity, non-alcoholic fatty liver disease, osteoporosis, and cancer. Furthermore, opportunities and the challenges facing basic research and clinical application of m6A RNA modification in metabolism-related human diseases are discussed. This review is meant to enhance our understanding of the molecular mechanisms, research methods, and clinical significance of m6A RNA modification in metabolism-related human diseases.
ISSN:2372-7705