TR-IDS: Anomaly-Based Intrusion Detection through Text-Convolutional Neural Network and Random Forest

As we head towards the IoT (Internet of Things) era, protecting network infrastructures and information security has become increasingly crucial. In recent years, Anomaly-Based Network Intrusion Detection Systems (ANIDSs) have gained extensive attention for their capability of detecting novel attack...

Full description

Bibliographic Details
Main Authors: Erxue Min, Jun Long, Qiang Liu, Jianjing Cui, Wei Chen
Format: Article
Language:English
Published: Hindawi-Wiley 2018-01-01
Series:Security and Communication Networks
Online Access:http://dx.doi.org/10.1155/2018/4943509
Description
Summary:As we head towards the IoT (Internet of Things) era, protecting network infrastructures and information security has become increasingly crucial. In recent years, Anomaly-Based Network Intrusion Detection Systems (ANIDSs) have gained extensive attention for their capability of detecting novel attacks. However, most ANIDSs focus on packet header information and omit the valuable information in payloads, despite the fact that payload-based attacks have become ubiquitous. In this paper, we propose a novel intrusion detection system named TR-IDS, which takes advantage of both statistical features and payload features. Word embedding and text-convolutional neural network (Text-CNN) are applied to extract effective information from payloads. After that, the sophisticated random forest algorithm is performed on the combination of statistical features and payload features. Extensive experimental evaluations demonstrate the effectiveness of the proposed methods.
ISSN:1939-0114
1939-0122