Spin-Orbit Splitting of Andreev States Revealed by Microwave Spectroscopy

We perform microwave spectroscopy of Andreev states in superconducting weak links tailored in an InAs-Al (core-full shell) epitaxially grown nanowire. The spectra present distinctive features with bundles of four lines crossing when the superconducting phase difference across the weak link is 0 or π...

Full description

Bibliographic Details
Main Authors: L. Tosi, C. Metzger, M. F. Goffman, C. Urbina, H. Pothier, Sunghun Park, A. Levy Yeyati, J. Nygård, P. Krogstrup
Format: Article
Language:English
Published: American Physical Society 2019-01-01
Series:Physical Review X
Online Access:http://doi.org/10.1103/PhysRevX.9.011010
Description
Summary:We perform microwave spectroscopy of Andreev states in superconducting weak links tailored in an InAs-Al (core-full shell) epitaxially grown nanowire. The spectra present distinctive features with bundles of four lines crossing when the superconducting phase difference across the weak link is 0 or π. We interpret these features as arising from zero-field spin-split Andreev states. A simple analytical model, which takes into account the Rashba spin-orbit interaction in a nanowire containing several transverse subbands, explains these features and their evolution with magnetic field. Our results show that the spin degree of freedom is addressable in Josephson junctions and constitute a first step towards its manipulation.
ISSN:2160-3308