On Upper Bounds on the Church-Rosser Theorem

The Church-Rosser theorem in the type-free lambda-calculus is well investigated both for beta-equality and beta-reduction. We provide a new proof of the theorem for beta-equality with no use of parallel reductions, but simply with Takahashi's translation (Gross-Knuth strategy). Based on this...

Full description

Bibliographic Details
Main Author: Ken-etsu Fujita
Format: Article
Language:English
Published: Open Publishing Association 2017-01-01
Series:Electronic Proceedings in Theoretical Computer Science
Online Access:http://arxiv.org/pdf/1701.00637v1
Description
Summary:The Church-Rosser theorem in the type-free lambda-calculus is well investigated both for beta-equality and beta-reduction. We provide a new proof of the theorem for beta-equality with no use of parallel reductions, but simply with Takahashi's translation (Gross-Knuth strategy). Based on this, upper bounds for reduction sequences on the theorem are obtained as the fourth level of the Grzegorczyk hierarchy.
ISSN:2075-2180