Stable overall water splitting in an asymmetric acid/alkaline electrolyzer comprising a bipolar membrane sandwiched by bifunctional cobalt‐nickel phosphide nanowire electrodes
Abstract Water splitting has been proposed to be a promising approach to producing clean hydrogen fuel. The two half‐reactions of water splitting, that is, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), take place kinetically fast in solutions with completely different pH...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-12-01
|
Series: | Carbon Energy |
Subjects: | |
Online Access: | https://doi.org/10.1002/cey2.56 |
id |
doaj-468e634634cf47ad8511c3ce91d80274 |
---|---|
record_format |
Article |
spelling |
doaj-468e634634cf47ad8511c3ce91d802742021-06-25T18:50:40ZengWileyCarbon Energy2637-93682020-12-012464665510.1002/cey2.56Stable overall water splitting in an asymmetric acid/alkaline electrolyzer comprising a bipolar membrane sandwiched by bifunctional cobalt‐nickel phosphide nanowire electrodesJunyuan Xu0Isilda Amorim1Yue Li2Junjie Li3Zhipeng Yu4Bingsen Zhang5Ana Araujo6Nan Zhang7Lifeng Liu8International Iberian Nanotechnology Laboratory (INL) Braga PortugalInternational Iberian Nanotechnology Laboratory (INL) Braga PortugalInternational Iberian Nanotechnology Laboratory (INL) Braga PortugalInternational Iberian Nanotechnology Laboratory (INL) Braga PortugalInternational Iberian Nanotechnology Laboratory (INL) Braga PortugalShenyang National Laboratory for Materials Science, Institute of Metal Research Chinese Academy of Sciences Shenyang Liaoning ChinaInternational Iberian Nanotechnology Laboratory (INL) Braga PortugalInternational Iberian Nanotechnology Laboratory (INL) Braga PortugalInternational Iberian Nanotechnology Laboratory (INL) Braga PortugalAbstract Water splitting has been proposed to be a promising approach to producing clean hydrogen fuel. The two half‐reactions of water splitting, that is, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), take place kinetically fast in solutions with completely different pH values. Enabling HER and OER to simultaneously occur under kinetically favorable conditions while using exclusively low‐cost, earth‐abundant electrocatalysts is highly desirable but remains a challenge. Herein, we demonstrate that using a bipolar membrane (BPM) we can accomplish HER in a strongly acidic solution and OER in a strongly basic solution, with bifunctional self‐supported cobalt‐nickel phosphide nanowire electrodes to catalyze both reactions. Such asymmetric acid/alkaline water electrolysis can be achieved at 1.567 V to deliver a current density of 10 mA/cm2 with ca. 100% Faradaic efficiency. Moreover, using an “irregular” BPM with unintentional crossover the voltage needed to afford 10 mA/cm2 can be reduced to 0.847 V, due to the assistance of electrochemical neutralization between acid and alkaline. Furthermore, we show that BPM‐based asymmetric water electrolysis can be accomplished in a circulated single‐cell electrolyzer delivering 10 mA/cm2 at 1.550 V and splitting water very stably for at least 25 hours, and that water electrolysis is enabled by a solar panel operating at 0.908 V (@13 mA/cm2), using an “irregular” BPM. BPM‐based asymmetric water electrolysis is a promising alternative to conventional proton and anion exchange membrane water electrolysis.https://doi.org/10.1002/cey2.56bipolar membranecobalt nickel phosphidehydrogen productionnoble metalfreewater splitting |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Junyuan Xu Isilda Amorim Yue Li Junjie Li Zhipeng Yu Bingsen Zhang Ana Araujo Nan Zhang Lifeng Liu |
spellingShingle |
Junyuan Xu Isilda Amorim Yue Li Junjie Li Zhipeng Yu Bingsen Zhang Ana Araujo Nan Zhang Lifeng Liu Stable overall water splitting in an asymmetric acid/alkaline electrolyzer comprising a bipolar membrane sandwiched by bifunctional cobalt‐nickel phosphide nanowire electrodes Carbon Energy bipolar membrane cobalt nickel phosphide hydrogen production noble metalfree water splitting |
author_facet |
Junyuan Xu Isilda Amorim Yue Li Junjie Li Zhipeng Yu Bingsen Zhang Ana Araujo Nan Zhang Lifeng Liu |
author_sort |
Junyuan Xu |
title |
Stable overall water splitting in an asymmetric acid/alkaline electrolyzer comprising a bipolar membrane sandwiched by bifunctional cobalt‐nickel phosphide nanowire electrodes |
title_short |
Stable overall water splitting in an asymmetric acid/alkaline electrolyzer comprising a bipolar membrane sandwiched by bifunctional cobalt‐nickel phosphide nanowire electrodes |
title_full |
Stable overall water splitting in an asymmetric acid/alkaline electrolyzer comprising a bipolar membrane sandwiched by bifunctional cobalt‐nickel phosphide nanowire electrodes |
title_fullStr |
Stable overall water splitting in an asymmetric acid/alkaline electrolyzer comprising a bipolar membrane sandwiched by bifunctional cobalt‐nickel phosphide nanowire electrodes |
title_full_unstemmed |
Stable overall water splitting in an asymmetric acid/alkaline electrolyzer comprising a bipolar membrane sandwiched by bifunctional cobalt‐nickel phosphide nanowire electrodes |
title_sort |
stable overall water splitting in an asymmetric acid/alkaline electrolyzer comprising a bipolar membrane sandwiched by bifunctional cobalt‐nickel phosphide nanowire electrodes |
publisher |
Wiley |
series |
Carbon Energy |
issn |
2637-9368 |
publishDate |
2020-12-01 |
description |
Abstract Water splitting has been proposed to be a promising approach to producing clean hydrogen fuel. The two half‐reactions of water splitting, that is, the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), take place kinetically fast in solutions with completely different pH values. Enabling HER and OER to simultaneously occur under kinetically favorable conditions while using exclusively low‐cost, earth‐abundant electrocatalysts is highly desirable but remains a challenge. Herein, we demonstrate that using a bipolar membrane (BPM) we can accomplish HER in a strongly acidic solution and OER in a strongly basic solution, with bifunctional self‐supported cobalt‐nickel phosphide nanowire electrodes to catalyze both reactions. Such asymmetric acid/alkaline water electrolysis can be achieved at 1.567 V to deliver a current density of 10 mA/cm2 with ca. 100% Faradaic efficiency. Moreover, using an “irregular” BPM with unintentional crossover the voltage needed to afford 10 mA/cm2 can be reduced to 0.847 V, due to the assistance of electrochemical neutralization between acid and alkaline. Furthermore, we show that BPM‐based asymmetric water electrolysis can be accomplished in a circulated single‐cell electrolyzer delivering 10 mA/cm2 at 1.550 V and splitting water very stably for at least 25 hours, and that water electrolysis is enabled by a solar panel operating at 0.908 V (@13 mA/cm2), using an “irregular” BPM. BPM‐based asymmetric water electrolysis is a promising alternative to conventional proton and anion exchange membrane water electrolysis. |
topic |
bipolar membrane cobalt nickel phosphide hydrogen production noble metalfree water splitting |
url |
https://doi.org/10.1002/cey2.56 |
work_keys_str_mv |
AT junyuanxu stableoverallwatersplittinginanasymmetricacidalkalineelectrolyzercomprisingabipolarmembranesandwichedbybifunctionalcobaltnickelphosphidenanowireelectrodes AT isildaamorim stableoverallwatersplittinginanasymmetricacidalkalineelectrolyzercomprisingabipolarmembranesandwichedbybifunctionalcobaltnickelphosphidenanowireelectrodes AT yueli stableoverallwatersplittinginanasymmetricacidalkalineelectrolyzercomprisingabipolarmembranesandwichedbybifunctionalcobaltnickelphosphidenanowireelectrodes AT junjieli stableoverallwatersplittinginanasymmetricacidalkalineelectrolyzercomprisingabipolarmembranesandwichedbybifunctionalcobaltnickelphosphidenanowireelectrodes AT zhipengyu stableoverallwatersplittinginanasymmetricacidalkalineelectrolyzercomprisingabipolarmembranesandwichedbybifunctionalcobaltnickelphosphidenanowireelectrodes AT bingsenzhang stableoverallwatersplittinginanasymmetricacidalkalineelectrolyzercomprisingabipolarmembranesandwichedbybifunctionalcobaltnickelphosphidenanowireelectrodes AT anaaraujo stableoverallwatersplittinginanasymmetricacidalkalineelectrolyzercomprisingabipolarmembranesandwichedbybifunctionalcobaltnickelphosphidenanowireelectrodes AT nanzhang stableoverallwatersplittinginanasymmetricacidalkalineelectrolyzercomprisingabipolarmembranesandwichedbybifunctionalcobaltnickelphosphidenanowireelectrodes AT lifengliu stableoverallwatersplittinginanasymmetricacidalkalineelectrolyzercomprisingabipolarmembranesandwichedbybifunctionalcobaltnickelphosphidenanowireelectrodes |
_version_ |
1721359446071836672 |