Marginalized mixture models for count data from multiple source populations
Abstract Mixture distributions provide flexibility in modeling data collected from populations having unexplained heterogeneity. While interpretations of regression parameters from traditional finite mixture models are specific to unobserved subpopulations or latent classes, investigators are often...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2017-04-01
|
Series: | Journal of Statistical Distributions and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s40488-017-0057-4 |
id |
doaj-466caf3d1c4c4a2da86a10d956522a12 |
---|---|
record_format |
Article |
spelling |
doaj-466caf3d1c4c4a2da86a10d956522a122020-11-24T21:55:34ZengSpringerOpenJournal of Statistical Distributions and Applications2195-58322017-04-014111710.1186/s40488-017-0057-4Marginalized mixture models for count data from multiple source populationsHabtamu K. Benecha0Brian Neelon1Kimon Divaris2John S. Preisser3National Agricultural Statistics Service, USDADepartment of Public Health Sciences, Medical University of South CarolinaDepartments of Epidemiology and Pediatric Dentistry, University of North CarolinaDepartment of Biostatistics, University of North CarolinaAbstract Mixture distributions provide flexibility in modeling data collected from populations having unexplained heterogeneity. While interpretations of regression parameters from traditional finite mixture models are specific to unobserved subpopulations or latent classes, investigators are often interested in making inferences about the marginal mean of a count variable in the overall population. Recently, marginal mean regression modeling procedures for zero-inflated count outcomes have been introduced within the framework of maximum likelihood estimation of zero-inflated Poisson and negative binomial regression models. In this article, we propose marginalized mixture regression models based on two-component mixtures of non-degenerate count data distributions that provide directly interpretable estimates of exposure effects on the overall population mean of a count outcome. The models are examined using simulations and applied to two datasets, one from a double-blind dental caries incidence trial, and the other from a horticultural experiment. The finite sample performance of the proposed models are compared with each other and with marginalized zero-inflated count models, as well as ordinary Poisson and negative binomial regression.http://link.springer.com/article/10.1186/s40488-017-0057-4Dental cariesExcess zerosMarginal inferenceMixture modelOver-dispersionZero-inflation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Habtamu K. Benecha Brian Neelon Kimon Divaris John S. Preisser |
spellingShingle |
Habtamu K. Benecha Brian Neelon Kimon Divaris John S. Preisser Marginalized mixture models for count data from multiple source populations Journal of Statistical Distributions and Applications Dental caries Excess zeros Marginal inference Mixture model Over-dispersion Zero-inflation |
author_facet |
Habtamu K. Benecha Brian Neelon Kimon Divaris John S. Preisser |
author_sort |
Habtamu K. Benecha |
title |
Marginalized mixture models for count data from multiple source populations |
title_short |
Marginalized mixture models for count data from multiple source populations |
title_full |
Marginalized mixture models for count data from multiple source populations |
title_fullStr |
Marginalized mixture models for count data from multiple source populations |
title_full_unstemmed |
Marginalized mixture models for count data from multiple source populations |
title_sort |
marginalized mixture models for count data from multiple source populations |
publisher |
SpringerOpen |
series |
Journal of Statistical Distributions and Applications |
issn |
2195-5832 |
publishDate |
2017-04-01 |
description |
Abstract Mixture distributions provide flexibility in modeling data collected from populations having unexplained heterogeneity. While interpretations of regression parameters from traditional finite mixture models are specific to unobserved subpopulations or latent classes, investigators are often interested in making inferences about the marginal mean of a count variable in the overall population. Recently, marginal mean regression modeling procedures for zero-inflated count outcomes have been introduced within the framework of maximum likelihood estimation of zero-inflated Poisson and negative binomial regression models. In this article, we propose marginalized mixture regression models based on two-component mixtures of non-degenerate count data distributions that provide directly interpretable estimates of exposure effects on the overall population mean of a count outcome. The models are examined using simulations and applied to two datasets, one from a double-blind dental caries incidence trial, and the other from a horticultural experiment. The finite sample performance of the proposed models are compared with each other and with marginalized zero-inflated count models, as well as ordinary Poisson and negative binomial regression. |
topic |
Dental caries Excess zeros Marginal inference Mixture model Over-dispersion Zero-inflation |
url |
http://link.springer.com/article/10.1186/s40488-017-0057-4 |
work_keys_str_mv |
AT habtamukbenecha marginalizedmixturemodelsforcountdatafrommultiplesourcepopulations AT brianneelon marginalizedmixturemodelsforcountdatafrommultiplesourcepopulations AT kimondivaris marginalizedmixturemodelsforcountdatafrommultiplesourcepopulations AT johnspreisser marginalizedmixturemodelsforcountdatafrommultiplesourcepopulations |
_version_ |
1725861773747159040 |