Dynamic Analysis for a Fractional-Order Autonomous Chaotic System

We introduce a discretization process to discretize a modified fractional-order optically injected semiconductor lasers model and investigate its dynamical behaviors. More precisely, a sufficient condition for the existence and uniqueness of the solution is obtained, and the necessary and sufficient...

Full description

Bibliographic Details
Main Authors: Jiangang Zhang, Juan Nan, Wenju Du, Yandong Chu, Hongwei Luo
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2016/8712496
Description
Summary:We introduce a discretization process to discretize a modified fractional-order optically injected semiconductor lasers model and investigate its dynamical behaviors. More precisely, a sufficient condition for the existence and uniqueness of the solution is obtained, and the necessary and sufficient conditions of stability of the discrete system are investigated. The results show that the system’s fractional parameter has an effect on the stability of the discrete system, and the system has rich dynamic characteristics such as Hopf bifurcation, attractor crisis, and chaotic attractors.
ISSN:1026-0226
1607-887X