Effect of Trichome Removal and UV-C on Populations of E. coli O157:H7 and Quality of Peach Fruit

The objective of the study was to evaluate the effect of trichome (fuzz) removal on the efficacy of ultraviolet-C in inactivating Escherichia coli O157:H7 on peach fruit, and quality of peach [Prunus persica (L.) Batsch, cv. PF25] fruit as affected by fuzz removal and ultraviolet-C. Peach (cultivar...

Full description

Bibliographic Details
Main Authors: Ruixiang Yan, Joshua B. Gurtler, James P. Mattheis, Xuetong Fan
Format: Article
Language:English
Published: American Society for Horticultural Science (ASHS) 2020-09-01
Series:HortScience
Subjects:
sem
Online Access:https://journals.ashs.org/hortsci/view/journals/hortsci/55/10/article-p1626.xml
Description
Summary:The objective of the study was to evaluate the effect of trichome (fuzz) removal on the efficacy of ultraviolet-C in inactivating Escherichia coli O157:H7 on peach fruit, and quality of peach [Prunus persica (L.) Batsch, cv. PF25] fruit as affected by fuzz removal and ultraviolet-C. Peach (cultivar PF25) fruit, with and without fuzz removal, were inoculated with a five-strain cocktail of E. coli O157:H7 and treated with ultraviolet-C at doses of 0, 221, and 442 mJ/cm2. Fuzz was rubbed off using damped cloths. Survival of E. coli populations was determined at days 1, 4, and 7 at 20 °C. To study fruit quality, noninoculated fruit with and without fuzz removal were treated with ultraviolet-C at the same doses. Results demonstrated that ultraviolet-C at 442 mJ/cm2 reduced the population of E. coli by 1.2 to 1.4 log colony-forming units (CFU)/fruit on peach with fuzz, and 0.9 to 1.1 log CFU/fruit on fruit without fuzz 1 day after ultraviolet-C treatment. However, E. coli populations of all samples were similar with additional storage time, resulting in no significant difference among the treatments after 7 days of storage at 20 °C. Ultraviolet-C at doses up to 442 mJ/cm2 did not have any significant effect on the surface color of peaches during 7 days of storage, although fruit with fuzz removal increased L*, hue, and chroma values. In addition, fuzz removal promoted the loss of firmness during storage. Furthermore, ultraviolet-C at 442 mJ/cm2 increased antioxidant capacity of peach skin with fuzz. Overall, our results suggested that fuzz removal had marginal effects on the efficacy of ultraviolet-C, and ultraviolet-C did not negatively affect the quality of peaches.
ISSN:2327-9834