THE COMPARISON OF ALGORITHMS OF RECOGNITION OF IMAGES HOPFILD’S NEURAL NETWORKS
The main advantage of artificial neural networks (ANN) in recognition of the cottages, is in their functioning like a human brain. The paper deals with image recognition neuron Hopfield’s networks, a comparative analysis of the recognition images by a projection’s method and the Hebb’s rule. For the...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Science and Innovation Center Publishing House
2016-05-01
|
Series: | В мире научных открытий |
Subjects: | |
Online Access: | http://journal-s.org/index.php/vmno/article/view/9132 |
id |
doaj-46494b27e1574eab967dcc60166bf2f2 |
---|---|
record_format |
Article |
spelling |
doaj-46494b27e1574eab967dcc60166bf2f22021-06-02T05:31:18ZengScience and Innovation Center Publishing HouseВ мире научных открытий2072-08312307-94282016-05-010513414510.12731/wsd-2016-5-75549THE COMPARISON OF ALGORITHMS OF RECOGNITION OF IMAGES HOPFILD’S NEURAL NETWORKSAnna Illarionovna Pavlova0Ksenya Anatolevna Bobrikova1Новосибирский государственный университет экономики и управленияНовосибирский государственный университет экономики и управленияThe main advantage of artificial neural networks (ANN) in recognition of the cottages, is in their functioning like a human brain. The paper deals with image recognition neuron Hopfield’s networks, a comparative analysis of the recognition images by a projection’s method and the Hebb’s rule. For these purposes, was developed program with C# in Microsoft Visual Studio 2012. In this article to recognition for images with different levels of distortion were used. The analysis of results of recognition of images has shown that the method of projections allows to restore strongly distorted images (level of distortions up to 25–30 percent)http://journal-s.org/index.php/vmno/article/view/9132искусственные нейронные сетиобразыраспознавание изображенийправило Хеббаметод проекцийфункция энергии сети |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Anna Illarionovna Pavlova Ksenya Anatolevna Bobrikova |
spellingShingle |
Anna Illarionovna Pavlova Ksenya Anatolevna Bobrikova THE COMPARISON OF ALGORITHMS OF RECOGNITION OF IMAGES HOPFILD’S NEURAL NETWORKS В мире научных открытий искусственные нейронные сети образы распознавание изображений правило Хебба метод проекций функция энергии сети |
author_facet |
Anna Illarionovna Pavlova Ksenya Anatolevna Bobrikova |
author_sort |
Anna Illarionovna Pavlova |
title |
THE COMPARISON OF ALGORITHMS OF RECOGNITION OF IMAGES HOPFILD’S NEURAL NETWORKS |
title_short |
THE COMPARISON OF ALGORITHMS OF RECOGNITION OF IMAGES HOPFILD’S NEURAL NETWORKS |
title_full |
THE COMPARISON OF ALGORITHMS OF RECOGNITION OF IMAGES HOPFILD’S NEURAL NETWORKS |
title_fullStr |
THE COMPARISON OF ALGORITHMS OF RECOGNITION OF IMAGES HOPFILD’S NEURAL NETWORKS |
title_full_unstemmed |
THE COMPARISON OF ALGORITHMS OF RECOGNITION OF IMAGES HOPFILD’S NEURAL NETWORKS |
title_sort |
comparison of algorithms of recognition of images hopfild’s neural networks |
publisher |
Science and Innovation Center Publishing House |
series |
В мире научных открытий |
issn |
2072-0831 2307-9428 |
publishDate |
2016-05-01 |
description |
The main advantage of artificial neural networks (ANN) in recognition of the cottages, is in their functioning like a human brain. The paper deals with image recognition neuron Hopfield’s networks, a comparative analysis of the recognition images by a projection’s method and the Hebb’s rule. For these purposes, was developed program with C# in Microsoft Visual Studio 2012. In this article to recognition for images with different levels of distortion were used. The analysis of results of recognition of images has shown that the method of projections allows to restore strongly distorted images (level of distortions up to 25–30 percent) |
topic |
искусственные нейронные сети образы распознавание изображений правило Хебба метод проекций функция энергии сети |
url |
http://journal-s.org/index.php/vmno/article/view/9132 |
work_keys_str_mv |
AT annaillarionovnapavlova thecomparisonofalgorithmsofrecognitionofimageshopfildsneuralnetworks AT ksenyaanatolevnabobrikova thecomparisonofalgorithmsofrecognitionofimageshopfildsneuralnetworks AT annaillarionovnapavlova comparisonofalgorithmsofrecognitionofimageshopfildsneuralnetworks AT ksenyaanatolevnabobrikova comparisonofalgorithmsofrecognitionofimageshopfildsneuralnetworks |
_version_ |
1721408044755058688 |