Assessment and Estimation of Face Detection Performance Based on Deep Learning for Forensic Applications

Face recognition is a valuable forensic tool for criminal investigators since it certainly helps in identifying individuals in scenarios of criminal activity like fugitives or child sexual abuse. It is, however, a very challenging task as it must be able to handle low-quality images of real world se...

Full description

Bibliographic Details
Main Authors: Deisy Chaves, Eduardo Fidalgo, Enrique Alegre, Rocío Alaiz-Rodríguez, Francisco Jáñez-Martino, George Azzopardi
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Sensors
Subjects:
GPU
CPU
Online Access:https://www.mdpi.com/1424-8220/20/16/4491
Description
Summary:Face recognition is a valuable forensic tool for criminal investigators since it certainly helps in identifying individuals in scenarios of criminal activity like fugitives or child sexual abuse. It is, however, a very challenging task as it must be able to handle low-quality images of real world settings and fulfill real time requirements. Deep learning approaches for face detection have proven to be very successful but they require large computation power and processing time. In this work, we evaluate the speed–accuracy tradeoff of three popular deep-learning-based face detectors on the WIDER Face and UFDD data sets in several CPUs and GPUs. We also develop a regression model capable to estimate the performance, both in terms of processing time and accuracy. We expect this to become a very useful tool for the end user in forensic laboratories in order to estimate the performance for different face detection options. Experimental results showed that the best speed–accuracy tradeoff is achieved with images resized to <inline-formula><math display="inline"><semantics><mrow><mn>50</mn><mo>%</mo></mrow></semantics></math></inline-formula> of the original size in GPUs and images resized to <inline-formula><math display="inline"><semantics><mrow><mn>25</mn><mo>%</mo></mrow></semantics></math></inline-formula> of the original size in CPUs. Moreover, performance can be estimated using multiple linear regression models with a Mean Absolute Error (MAE) of 0.113, which is very promising for the forensic field.
ISSN:1424-8220