Convergent evolution of saccate body shapes in nematodes through distinct developmental mechanisms
Abstract Background The vast majority of nematode species have vermiform (worm-shaped) body plans throughout post-embryonic development. However, atypical body shapes have evolved multiple times. The plant-parasitic Tylenchomorpha nematode Heterodera glycines hatches as a vermiform infective juvenil...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2019-03-01
|
Series: | EvoDevo |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13227-019-0118-5 |
id |
doaj-4640e5234867433898a1c758e2f7ba48 |
---|---|
record_format |
Article |
spelling |
doaj-4640e5234867433898a1c758e2f7ba482020-11-25T02:24:19ZengBMCEvoDevo2041-91392019-03-0110112110.1186/s13227-019-0118-5Convergent evolution of saccate body shapes in nematodes through distinct developmental mechanismsSita Thapa0Michael K. Gates1Ursula Reuter-Carlson2Rebecca J. Androwski3Nathan E. Schroeder4Department of Crop Sciences, University of Illinois at Urbana-ChampaignDepartment of Crop Sciences, University of Illinois at Urbana-ChampaignDepartment of Crop Sciences, University of Illinois at Urbana-ChampaignNeuroscience Program, University of Illinois at Urbana-ChampaignDepartment of Crop Sciences, University of Illinois at Urbana-ChampaignAbstract Background The vast majority of nematode species have vermiform (worm-shaped) body plans throughout post-embryonic development. However, atypical body shapes have evolved multiple times. The plant-parasitic Tylenchomorpha nematode Heterodera glycines hatches as a vermiform infective juvenile. Following infection and the establishment of a feeding site, H. glycines grows disproportionately greater in width than length, developing into a saccate adult. Body size in Caenorhabditis elegans was previously shown to correlate with post-embryonic divisions of laterally positioned stem cell-like ‘seam’ cells and endoreduplication of seam cell epidermal daughters. To test if a similar mechanism produces the unusual body shape of saccate parasitic nematodes, we compared seam cell development and epidermal ploidy levels of H. glycines to C. elegans. To study the evolution of body shape development, we examined seam cell development of four additional Tylenchomorpha species with vermiform or saccate body shapes. Results We confirmed the presence of seam cell homologs and their proliferation in H. glycines. This results in the adult female epidermis having approximately 1800 nuclei compared with the 139 nuclei in the primary epidermal syncytium of C. elegans. Similar to C. elegans, we found a significant correlation between H. glycines body volume and the number and ploidy level of epidermal nuclei. While we found that the seam cells also proliferate in the independently evolved saccate nematode Meloidogyne incognita following infection, the division pattern differed substantially from that seen in H. glycines. Interestingly, the close relative of H. glycines, Rotylenchulus reniformis does not undergo extensive seam cell proliferation during its development into a saccate form. Conclusions Our data reveal that seam cell proliferation and epidermal nuclear ploidy correlate with growth in H. glycines. Our finding of distinct seam cell division patterns in the independently evolved saccate species M. incognita and H. glycines is suggestive of parallel evolution of saccate forms. The lack of seam cell proliferation in R. reniformis demonstrates that seam cell proliferation and endoreduplication are not strictly required for increased body volume and atypical body shape. We speculate that R. reniformis may serve as an extant transitional model for the evolution of saccate body shape.http://link.springer.com/article/10.1186/s13227-019-0118-5Soybean cyst nematodeRoot-knot nematodeReniform nematodeLesion nematodeAphelenchusPyriform |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sita Thapa Michael K. Gates Ursula Reuter-Carlson Rebecca J. Androwski Nathan E. Schroeder |
spellingShingle |
Sita Thapa Michael K. Gates Ursula Reuter-Carlson Rebecca J. Androwski Nathan E. Schroeder Convergent evolution of saccate body shapes in nematodes through distinct developmental mechanisms EvoDevo Soybean cyst nematode Root-knot nematode Reniform nematode Lesion nematode Aphelenchus Pyriform |
author_facet |
Sita Thapa Michael K. Gates Ursula Reuter-Carlson Rebecca J. Androwski Nathan E. Schroeder |
author_sort |
Sita Thapa |
title |
Convergent evolution of saccate body shapes in nematodes through distinct developmental mechanisms |
title_short |
Convergent evolution of saccate body shapes in nematodes through distinct developmental mechanisms |
title_full |
Convergent evolution of saccate body shapes in nematodes through distinct developmental mechanisms |
title_fullStr |
Convergent evolution of saccate body shapes in nematodes through distinct developmental mechanisms |
title_full_unstemmed |
Convergent evolution of saccate body shapes in nematodes through distinct developmental mechanisms |
title_sort |
convergent evolution of saccate body shapes in nematodes through distinct developmental mechanisms |
publisher |
BMC |
series |
EvoDevo |
issn |
2041-9139 |
publishDate |
2019-03-01 |
description |
Abstract Background The vast majority of nematode species have vermiform (worm-shaped) body plans throughout post-embryonic development. However, atypical body shapes have evolved multiple times. The plant-parasitic Tylenchomorpha nematode Heterodera glycines hatches as a vermiform infective juvenile. Following infection and the establishment of a feeding site, H. glycines grows disproportionately greater in width than length, developing into a saccate adult. Body size in Caenorhabditis elegans was previously shown to correlate with post-embryonic divisions of laterally positioned stem cell-like ‘seam’ cells and endoreduplication of seam cell epidermal daughters. To test if a similar mechanism produces the unusual body shape of saccate parasitic nematodes, we compared seam cell development and epidermal ploidy levels of H. glycines to C. elegans. To study the evolution of body shape development, we examined seam cell development of four additional Tylenchomorpha species with vermiform or saccate body shapes. Results We confirmed the presence of seam cell homologs and their proliferation in H. glycines. This results in the adult female epidermis having approximately 1800 nuclei compared with the 139 nuclei in the primary epidermal syncytium of C. elegans. Similar to C. elegans, we found a significant correlation between H. glycines body volume and the number and ploidy level of epidermal nuclei. While we found that the seam cells also proliferate in the independently evolved saccate nematode Meloidogyne incognita following infection, the division pattern differed substantially from that seen in H. glycines. Interestingly, the close relative of H. glycines, Rotylenchulus reniformis does not undergo extensive seam cell proliferation during its development into a saccate form. Conclusions Our data reveal that seam cell proliferation and epidermal nuclear ploidy correlate with growth in H. glycines. Our finding of distinct seam cell division patterns in the independently evolved saccate species M. incognita and H. glycines is suggestive of parallel evolution of saccate forms. The lack of seam cell proliferation in R. reniformis demonstrates that seam cell proliferation and endoreduplication are not strictly required for increased body volume and atypical body shape. We speculate that R. reniformis may serve as an extant transitional model for the evolution of saccate body shape. |
topic |
Soybean cyst nematode Root-knot nematode Reniform nematode Lesion nematode Aphelenchus Pyriform |
url |
http://link.springer.com/article/10.1186/s13227-019-0118-5 |
work_keys_str_mv |
AT sitathapa convergentevolutionofsaccatebodyshapesinnematodesthroughdistinctdevelopmentalmechanisms AT michaelkgates convergentevolutionofsaccatebodyshapesinnematodesthroughdistinctdevelopmentalmechanisms AT ursulareutercarlson convergentevolutionofsaccatebodyshapesinnematodesthroughdistinctdevelopmentalmechanisms AT rebeccajandrowski convergentevolutionofsaccatebodyshapesinnematodesthroughdistinctdevelopmentalmechanisms AT nathaneschroeder convergentevolutionofsaccatebodyshapesinnematodesthroughdistinctdevelopmentalmechanisms |
_version_ |
1724856316397092864 |