Using High-Dimensional Approaches to Probe Monocytes and Macrophages in Cardiovascular Disease
High dimensional approaches that characterize single cells at unprecedented depth have helped uncover unappreciated heterogeneity, a better understanding of myeloid cell origins, developmental relationships and functions. These advancements are particularly important in cardiovascular disease, which...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2019-09-01
|
Series: | Frontiers in Immunology |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fimmu.2019.02146/full |
id |
doaj-46356770d4d146a88161492dbd49e1f9 |
---|---|
record_format |
Article |
spelling |
doaj-46356770d4d146a88161492dbd49e1f92020-11-24T21:40:14ZengFrontiers Media S.A.Frontiers in Immunology1664-32242019-09-011010.3389/fimmu.2019.02146473281Using High-Dimensional Approaches to Probe Monocytes and Macrophages in Cardiovascular DiseaseSarah A. Dick0Sarah A. Dick1Rysa Zaman2Rysa Zaman3Slava Epelman4Slava Epelman5Slava Epelman6University Health Network, Toronto General Research Institute, Toronto, ON, CanadaTed Rogers Centre for Heart Research, Toronto, ON, CanadaUniversity Health Network, Toronto General Research Institute, Toronto, ON, CanadaTed Rogers Centre for Heart Research, Toronto, ON, CanadaUniversity Health Network, Toronto General Research Institute, Toronto, ON, CanadaTed Rogers Centre for Heart Research, Toronto, ON, CanadaPeter Munk Cardiac Center, Toronto, ON, CanadaHigh dimensional approaches that characterize single cells at unprecedented depth have helped uncover unappreciated heterogeneity, a better understanding of myeloid cell origins, developmental relationships and functions. These advancements are particularly important in cardiovascular disease, which remains the leading cause of death worldwide. Gradual, monocyte-dependent inflammatory processes, such as the development of atherosclerotic plaque within arterial vessels, contrasts with the robust acute response within the myocardium that occurs when a vessel is occluded. Monocytes and macrophages differentially contribute to tissue injury, repair and regeneration in these contexts, yet many questions remain about which myeloid cell types are involved in a coordinated, organ-level sterile inflammatory response. Single cell RNA sequencing, combined with functional analyses have demonstrated that at least three populations of resident cardiac macrophages exist, and after tissue injury, there is significant diversification of the tissue macrophage pool driven by recruited monocytes. While these studies have provided important insights, they raise many new questions and avenues for future exploration. For example, how do transcriptionally defined sub-populations of cardiac macrophages relate to each other? Are they different activation states along a pre-defined trajectory of macrophage differentiation or do local microenvironments drive newly recruited monocytes into distinct functions? The answers to these questions will require integration of high-dimensional approaches into biologically relevant in vivo experimental systems to ensure the predicted heterogeneity possess a functional outcome.https://www.frontiersin.org/article/10.3389/fimmu.2019.02146/fullmacrophagesmonocytescardiovascularscRNA-seqmyocardial infarctionatherosclerosis |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sarah A. Dick Sarah A. Dick Rysa Zaman Rysa Zaman Slava Epelman Slava Epelman Slava Epelman |
spellingShingle |
Sarah A. Dick Sarah A. Dick Rysa Zaman Rysa Zaman Slava Epelman Slava Epelman Slava Epelman Using High-Dimensional Approaches to Probe Monocytes and Macrophages in Cardiovascular Disease Frontiers in Immunology macrophages monocytes cardiovascular scRNA-seq myocardial infarction atherosclerosis |
author_facet |
Sarah A. Dick Sarah A. Dick Rysa Zaman Rysa Zaman Slava Epelman Slava Epelman Slava Epelman |
author_sort |
Sarah A. Dick |
title |
Using High-Dimensional Approaches to Probe Monocytes and Macrophages in Cardiovascular Disease |
title_short |
Using High-Dimensional Approaches to Probe Monocytes and Macrophages in Cardiovascular Disease |
title_full |
Using High-Dimensional Approaches to Probe Monocytes and Macrophages in Cardiovascular Disease |
title_fullStr |
Using High-Dimensional Approaches to Probe Monocytes and Macrophages in Cardiovascular Disease |
title_full_unstemmed |
Using High-Dimensional Approaches to Probe Monocytes and Macrophages in Cardiovascular Disease |
title_sort |
using high-dimensional approaches to probe monocytes and macrophages in cardiovascular disease |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Immunology |
issn |
1664-3224 |
publishDate |
2019-09-01 |
description |
High dimensional approaches that characterize single cells at unprecedented depth have helped uncover unappreciated heterogeneity, a better understanding of myeloid cell origins, developmental relationships and functions. These advancements are particularly important in cardiovascular disease, which remains the leading cause of death worldwide. Gradual, monocyte-dependent inflammatory processes, such as the development of atherosclerotic plaque within arterial vessels, contrasts with the robust acute response within the myocardium that occurs when a vessel is occluded. Monocytes and macrophages differentially contribute to tissue injury, repair and regeneration in these contexts, yet many questions remain about which myeloid cell types are involved in a coordinated, organ-level sterile inflammatory response. Single cell RNA sequencing, combined with functional analyses have demonstrated that at least three populations of resident cardiac macrophages exist, and after tissue injury, there is significant diversification of the tissue macrophage pool driven by recruited monocytes. While these studies have provided important insights, they raise many new questions and avenues for future exploration. For example, how do transcriptionally defined sub-populations of cardiac macrophages relate to each other? Are they different activation states along a pre-defined trajectory of macrophage differentiation or do local microenvironments drive newly recruited monocytes into distinct functions? The answers to these questions will require integration of high-dimensional approaches into biologically relevant in vivo experimental systems to ensure the predicted heterogeneity possess a functional outcome. |
topic |
macrophages monocytes cardiovascular scRNA-seq myocardial infarction atherosclerosis |
url |
https://www.frontiersin.org/article/10.3389/fimmu.2019.02146/full |
work_keys_str_mv |
AT sarahadick usinghighdimensionalapproachestoprobemonocytesandmacrophagesincardiovasculardisease AT sarahadick usinghighdimensionalapproachestoprobemonocytesandmacrophagesincardiovasculardisease AT rysazaman usinghighdimensionalapproachestoprobemonocytesandmacrophagesincardiovasculardisease AT rysazaman usinghighdimensionalapproachestoprobemonocytesandmacrophagesincardiovasculardisease AT slavaepelman usinghighdimensionalapproachestoprobemonocytesandmacrophagesincardiovasculardisease AT slavaepelman usinghighdimensionalapproachestoprobemonocytesandmacrophagesincardiovasculardisease AT slavaepelman usinghighdimensionalapproachestoprobemonocytesandmacrophagesincardiovasculardisease |
_version_ |
1725927192454496256 |