Secure Domination in Lict Graphs

For any graph \(G=(V,E)\), lict graph \(\eta(G)\) of a graph \(G\) is the graph whose vertex set is the union of the set of edges and the set of cut-vertices of \(G\) in which two vertices are adjacent if and only if the corresponding edges are adjacent or the corresponding members of \(G\) are inci...

Full description

Bibliographic Details
Main Authors: Girish V. Rajasekharaiah, Usha P. Murthy
Format: Article
Language:English
Published: Ptolemy Scientific Research Press 2018-06-01
Series:Open Journal of Mathematical Sciences
Subjects:
Online Access:https://openmathscience.com/secure-domination-in-lict-graphs/
Description
Summary:For any graph \(G=(V,E)\), lict graph \(\eta(G)\) of a graph \(G\) is the graph whose vertex set is the union of the set of edges and the set of cut-vertices of \(G\) in which two vertices are adjacent if and only if the corresponding edges are adjacent or the corresponding members of \(G\) are incident. A secure lict dominating set of a graph \(\eta(G)\) , is a dominating set \(F \subseteq V(\eta(G))\) with the property that for each \(v_{1} \in (V(\eta(G))-F)\), there exists \(v_{2} \in F\) adjacent to \(v_{1}\) such that \((F-\lbrace v_{2}\rbrace) \cup \lbrace v_{1} \rbrace\) is a dominating set of \(\eta(G)\). The secure lict dominating number \(\gamma_{se}(\eta(G))\) of \(G\) is a minimum cardinality of a secure lict dominating set of \(G\). In this paper many bounds on \(\gamma_{se}(\eta(G))\) are obtained and its exact values for some standard graphs are found in terms of parameters of \(G\). Also its relationship with other domination parameters is investigated.
ISSN:2616-4906
2523-0212