A miniaturized optoelectronic biosensor for real-time point-of-care total protein analysis

A miniaturized optoelectronic sensor is demonstrated that measures total protein concentration in serum and urine with sensitivity and accuracy comparable to gold-standard methods. The sensor is comprised of a vertical cavity surface emitting laser (VCSEL), photodetector and other custom optical com...

Full description

Bibliographic Details
Main Authors: Ophir Vermesh, Fariah Mahzabeen, Jelena Levi, Marilyn Tan, Israt S. Alam, Carmel T. Chan, Sanjiv S. Gambhir, James S. Harris
Format: Article
Language:English
Published: Elsevier 2021-01-01
Series:MethodsX
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2215016121002077
Description
Summary:A miniaturized optoelectronic sensor is demonstrated that measures total protein concentration in serum and urine with sensitivity and accuracy comparable to gold-standard methods. The sensor is comprised of a vertical cavity surface emitting laser (VCSEL), photodetector and other custom optical components and electronics that can be hybrid packaged into a portable, handheld form factor. In conjunction, a custom fluorescence assay has been developed based on the protein-induced fluorescence enhancement (PIFE) phenomenon, enabling real-time sensor response to changes in protein concentration. Methods are described for the following: • Standard curves: Used to determine the sensitivity, dynamic range, and linearity of the VCSEL biosensor/PIFE assay system in buffer as well as in human blood and urine samples. • Comparison of VCSEL biosensor performance with a benchtop fluorimetric microplate reader. • Accuracy of the VCSEL biosensor/PIFE assay system: Evaluated by comparing sensor measurements with gold-standard clinical laboratory measurements of total protein in serum and urine samples from patients with diabetes.
ISSN:2215-0161