ℤ2 × ℤ2-Cordial Cycle-Free Hypergraphs
Hovey introduced A-cordial labelings as a generalization of cordial and harmonious labelings [7]. If A is an Abelian group, then a labeling f : V (G) → A of the vertices of some graph G induces an edge labeling on G; the edge uv receives the label f(u) + f(v). A graph G is A-cordial if there is a ve...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sciendo
2021-11-01
|
Series: | Discussiones Mathematicae Graph Theory |
Subjects: | |
Online Access: | https://doi.org/10.7151/dmgt.2226 |
id |
doaj-4612c9bbd67143738842c752e7ec4989 |
---|---|
record_format |
Article |
spelling |
doaj-4612c9bbd67143738842c752e7ec49892021-09-05T17:20:25ZengSciendoDiscussiones Mathematicae Graph Theory2083-58922021-11-014141021104010.7151/dmgt.2226ℤ2 × ℤ2-Cordial Cycle-Free HypergraphsCichacz Sylwia0Görlich Agnieszka1Tuza Zsolt2AGH University of Science and Technologyal. A. Mickiewicza 30, 30–059Kraków, PolandAGH University of Science and Technologyal. A. Mickiewicza 30, 30–059Kraków, PolandAlfréd Rényi Institute of Mathematics Hungarian Academy of SciencesH-1053Budapest, Reáltanoda u. 13–15 and Department of Computer Science and SystemsTechnology University of PannoniaH-8200 Veszprém, Egyetem u. 10, HungaryHovey introduced A-cordial labelings as a generalization of cordial and harmonious labelings [7]. If A is an Abelian group, then a labeling f : V (G) → A of the vertices of some graph G induces an edge labeling on G; the edge uv receives the label f(u) + f(v). A graph G is A-cordial if there is a vertex-labeling such that (1) the vertex label classes differ in size by at most one and (2) the induced edge label classes differ in size by at most one.https://doi.org/10.7151/dmgt.2226v4-cordial graphhypergraphlabeling of hypergraphhyper-tree05c6505c78 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Cichacz Sylwia Görlich Agnieszka Tuza Zsolt |
spellingShingle |
Cichacz Sylwia Görlich Agnieszka Tuza Zsolt ℤ2 × ℤ2-Cordial Cycle-Free Hypergraphs Discussiones Mathematicae Graph Theory v4-cordial graph hypergraph labeling of hypergraph hyper-tree 05c65 05c78 |
author_facet |
Cichacz Sylwia Görlich Agnieszka Tuza Zsolt |
author_sort |
Cichacz Sylwia |
title |
ℤ2 × ℤ2-Cordial Cycle-Free Hypergraphs |
title_short |
ℤ2 × ℤ2-Cordial Cycle-Free Hypergraphs |
title_full |
ℤ2 × ℤ2-Cordial Cycle-Free Hypergraphs |
title_fullStr |
ℤ2 × ℤ2-Cordial Cycle-Free Hypergraphs |
title_full_unstemmed |
ℤ2 × ℤ2-Cordial Cycle-Free Hypergraphs |
title_sort |
ℤ2 × ℤ2-cordial cycle-free hypergraphs |
publisher |
Sciendo |
series |
Discussiones Mathematicae Graph Theory |
issn |
2083-5892 |
publishDate |
2021-11-01 |
description |
Hovey introduced A-cordial labelings as a generalization of cordial and harmonious labelings [7]. If A is an Abelian group, then a labeling f : V (G) → A of the vertices of some graph G induces an edge labeling on G; the edge uv receives the label f(u) + f(v). A graph G is A-cordial if there is a vertex-labeling such that (1) the vertex label classes differ in size by at most one and (2) the induced edge label classes differ in size by at most one. |
topic |
v4-cordial graph hypergraph labeling of hypergraph hyper-tree 05c65 05c78 |
url |
https://doi.org/10.7151/dmgt.2226 |
work_keys_str_mv |
AT cichaczsylwia z2z2cordialcyclefreehypergraphs AT gorlichagnieszka z2z2cordialcyclefreehypergraphs AT tuzazsolt z2z2cordialcyclefreehypergraphs |
_version_ |
1717786345063055360 |