ℤ2 × ℤ2-Cordial Cycle-Free Hypergraphs

Hovey introduced A-cordial labelings as a generalization of cordial and harmonious labelings [7]. If A is an Abelian group, then a labeling f : V (G) → A of the vertices of some graph G induces an edge labeling on G; the edge uv receives the label f(u) + f(v). A graph G is A-cordial if there is a ve...

Full description

Bibliographic Details
Main Authors: Cichacz Sylwia, Görlich Agnieszka, Tuza Zsolt
Format: Article
Language:English
Published: Sciendo 2021-11-01
Series:Discussiones Mathematicae Graph Theory
Subjects:
Online Access:https://doi.org/10.7151/dmgt.2226
id doaj-4612c9bbd67143738842c752e7ec4989
record_format Article
spelling doaj-4612c9bbd67143738842c752e7ec49892021-09-05T17:20:25ZengSciendoDiscussiones Mathematicae Graph Theory2083-58922021-11-014141021104010.7151/dmgt.2226ℤ2 × ℤ2-Cordial Cycle-Free HypergraphsCichacz Sylwia0Görlich Agnieszka1Tuza Zsolt2AGH University of Science and Technologyal. A. Mickiewicza 30, 30–059Kraków, PolandAGH University of Science and Technologyal. A. Mickiewicza 30, 30–059Kraków, PolandAlfréd Rényi Institute of Mathematics Hungarian Academy of SciencesH-1053Budapest, Reáltanoda u. 13–15 and Department of Computer Science and SystemsTechnology University of PannoniaH-8200 Veszprém, Egyetem u. 10, HungaryHovey introduced A-cordial labelings as a generalization of cordial and harmonious labelings [7]. If A is an Abelian group, then a labeling f : V (G) → A of the vertices of some graph G induces an edge labeling on G; the edge uv receives the label f(u) + f(v). A graph G is A-cordial if there is a vertex-labeling such that (1) the vertex label classes differ in size by at most one and (2) the induced edge label classes differ in size by at most one.https://doi.org/10.7151/dmgt.2226v4-cordial graphhypergraphlabeling of hypergraphhyper-tree05c6505c78
collection DOAJ
language English
format Article
sources DOAJ
author Cichacz Sylwia
Görlich Agnieszka
Tuza Zsolt
spellingShingle Cichacz Sylwia
Görlich Agnieszka
Tuza Zsolt
ℤ2 × ℤ2-Cordial Cycle-Free Hypergraphs
Discussiones Mathematicae Graph Theory
v4-cordial graph
hypergraph
labeling of hypergraph
hyper-tree
05c65
05c78
author_facet Cichacz Sylwia
Görlich Agnieszka
Tuza Zsolt
author_sort Cichacz Sylwia
title ℤ2 × ℤ2-Cordial Cycle-Free Hypergraphs
title_short ℤ2 × ℤ2-Cordial Cycle-Free Hypergraphs
title_full ℤ2 × ℤ2-Cordial Cycle-Free Hypergraphs
title_fullStr ℤ2 × ℤ2-Cordial Cycle-Free Hypergraphs
title_full_unstemmed ℤ2 × ℤ2-Cordial Cycle-Free Hypergraphs
title_sort ℤ2 × ℤ2-cordial cycle-free hypergraphs
publisher Sciendo
series Discussiones Mathematicae Graph Theory
issn 2083-5892
publishDate 2021-11-01
description Hovey introduced A-cordial labelings as a generalization of cordial and harmonious labelings [7]. If A is an Abelian group, then a labeling f : V (G) → A of the vertices of some graph G induces an edge labeling on G; the edge uv receives the label f(u) + f(v). A graph G is A-cordial if there is a vertex-labeling such that (1) the vertex label classes differ in size by at most one and (2) the induced edge label classes differ in size by at most one.
topic v4-cordial graph
hypergraph
labeling of hypergraph
hyper-tree
05c65
05c78
url https://doi.org/10.7151/dmgt.2226
work_keys_str_mv AT cichaczsylwia z2z2cordialcyclefreehypergraphs
AT gorlichagnieszka z2z2cordialcyclefreehypergraphs
AT tuzazsolt z2z2cordialcyclefreehypergraphs
_version_ 1717786345063055360