Effect of Shear Deformation on Texture Evolution in Rolled Pure Titanium

The cold rolling texture evolution under different strain states caused by coupled effects from different combinations of roll gap geometry and friction in pure titanium with initial typical recrystallized texture has been studied using viscoplastic self-consistent simulations. Under plane strain st...

Full description

Bibliographic Details
Main Authors: Yang Huanping, Wang Yaomian
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201818602002
Description
Summary:The cold rolling texture evolution under different strain states caused by coupled effects from different combinations of roll gap geometry and friction in pure titanium with initial typical recrystallized texture has been studied using viscoplastic self-consistent simulations. Under plane strain state, the texture is dominated by a typical cold rolling fiber texture RD//<1010> in pure titanium. However, when shear deformation is induced and increased, RD//<1010> fiber texture is decreased, whereas basal texture (0001)[1010] is increased and a strong partial fiber texture RD//<2110> is formed. The variation of cold rolling texture at different strain states can be ascribed to variation of relative contribution from activation of prismatic, basal and pyramidal slip.
ISSN:2261-236X