CPSFS: A Credible Personalized Spam Filtering Scheme by Crowdsourcing

Email spam consumes a lot of network resources and threatens many systems because of its unwanted or malicious content. Most existing spam filters only target complete-spam but ignore semispam. This paper proposes a novel and comprehensive CPSFS scheme: Credible Personalized Spam Filtering Scheme, w...

Full description

Bibliographic Details
Main Authors: Xin Liu, Pingjun Zou, Weishan Zhang, Jiehan Zhou, Changying Dai, Feng Wang, Xiaomiao Zhang
Format: Article
Language:English
Published: Hindawi-Wiley 2017-01-01
Series:Wireless Communications and Mobile Computing
Online Access:http://dx.doi.org/10.1155/2017/1457870
Description
Summary:Email spam consumes a lot of network resources and threatens many systems because of its unwanted or malicious content. Most existing spam filters only target complete-spam but ignore semispam. This paper proposes a novel and comprehensive CPSFS scheme: Credible Personalized Spam Filtering Scheme, which classifies spam into two categories: complete-spam and semispam, and targets filtering both kinds of spam. Complete-spam is always spam for all users; semispam is an email identified as spam by some users and as regular email by other users. Most existing spam filters target complete-spam but ignore semispam. In CPSFS, Bayesian filtering is deployed at email servers to identify complete-spam, while semispam is identified at client side by crowdsourcing. An email user client can distinguish junk from legitimate emails according to spam reports from credible contacts with the similar interests. Social trust and interest similarity between users and their contacts are calculated so that spam reports are more accurately targeted to similar users. The experimental results show that the proposed CPSFS can improve the accuracy rate of distinguishing spam from legitimate emails compared with that of Bayesian filter alone.
ISSN:1530-8669
1530-8677